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The first part of the present work is devoted to justification of an existence theorem for a problem on motion
of non-Newtonian incompressible fluid possessing nonhomogeneous viscosity properties (the viscosity function
is supposed to be transported along with particles of fluid). In the second part of the work, we prove that, if the
initial values of viscosity tend to infinity in some subdomains, then generalized solution of the original problem
tends to generalized solution of a problem on motion of rigid bodies in the fluid, where motion of bodies is
controlled by hydrodynamic reactions.

1 Formulations Of Problems

The problem on a motion of non-Newtonian viscous incompressible fluid is as follows.
Problem A. Fluid occupies a bounded domain Ω in R3. We seek for velocity field ~u : QT → R3, pressure

p∗ : QT → R and viscosity µ : QT → R, QT = Ω × [0, T ] satisfying the following equations and initial and
boundary conditions:

Dt~u +
∑3

i=1 uiDi~u− div(µW ) = ~f −∇p∗, (x, t) ∈ QT , (1.1)

Dtµ +
∑3

i=1 uiDiµ = 0, (x, t) ∈ QT , (1.2)
div~u = 0, (x, t) ∈ QT , (1.3)

~u(x, t)|t=0 = ~u0(x), x ∈ Ω, (1.4)
~u(x, t)|∂Ω = 0, µ(x, t)|t=0 = µ0(x), (1.5)

0 < m̃ ≤ µ0(x) ≤ M̃ < ∞, m̃, M̃ = const , x ∈ Ω. (1.6)

W is supposed to satisfy the following demands: µW ∈ ∂Φ(D(~u)), ∂Φ(D(~u)) is the subdifferential of the
functional Φ(χ) = 1

p

∫
Ω

Q(x, χ(x))dx at a point χ = D(~u), where

Q(x, χ(x)) =
{

µ|χ|p, if |χ| ≤ M
+∞, if |χ| > M, M = const < +∞.

In formulae (1.1)–(1.6) and in the rest of the paper the following notations are in use: Di = ∂/∂xi,
Dt~ϕ = ∂~ϕ/∂t, (~u ⊗ ~v)ij = uivj , (∇~u)ij = Diuj , A : B =

∑3
i,j=1 aijbij is a tensor product of two ma-

trices; Dij(~u) = (1/2)(Diuj + Djui) is deformation tensor, ~a(µ, ~u) = {−∑3
i=1 Di(µ|D(~u)|p−2Dij(~u))}3j=1,

|D(~u)|2 = D(~u) : D(~u).
Also we use the following functional spaces: D(Ω) is the space of infinitely smooth compactly supported in

Ω functions, V(Ω) = {~ϕ| ϕi ∈ D(Ω), div~ϕ = 0}, V (Ω), V k(Ω) are the closures of V(Ω) with respect to norms
(W 1

p (Ω))3, (Hk(Ω))3, k = 1, 2, . . ., respectively, H(Ω) is the closure of V(Ω) with respect to norm (L2(Ω))3;
H0(Ω) = {~v ∈ H(Ω) | ~v|∂Ω = 0} (here ~v|∂Ω = 0 is the trace of ~v on a boundary of domain Ω); V ′(Ω), V −k(Ω)
are the spaces conjugate to V (Ω) and V k(Ω) (we denote (H0(Ω))∗ = H0(Ω)).

Definition 1.1. By a generalized solution of Problem A we call a pair of functions {~u(x, t), µ(x, t)} such
that ~u ∈ Lp(0, T ; V ) ∩ L∞(0, T ; H0(Ω)), |D(~u(t))| ≤ M for a. e. t ∈ [0, T ], µ ∈ L∞(QT ), m̃ ≤ µ(x, t) ≤ M̃ for

∗The first chapter of the Candidate of Science Thesis. The shorter version was published in Sibirskii Matematicheski Zhurnal
39 (1998), No. 1, pp. 146–160 in Russian. (English translation in Siberian Math. Journal 39 (1998), No. 1, pp. 126–140.)
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a. e. (x, t) ∈ QT , and the variational inequality

∫

QT

Dt~ϕ(~ϕ− ~u)dxdt +
∫

QT

µ|D(~u)|p−2D(~u) : D(~ϕ− ~u)dxdt

−
∫

QT

~u⊗ ~u : ∇(~ϕ− ~u)dxdt ≥
∫

QT

~f(~ϕ− ~u)dxdt (1.7)

and integral identity ∫

QT

µ(Dtψ + ~u∇ψ)dxdt +
∫

Ω

µ(x, 0)ψ(x, 0)dx = 0, (1.8)

hold for all test functions ~ϕ ∈ L1
p(0, T ; V ) and ψ ∈ C1(QT ) satisfying |D(~ϕ)| ≤ M , ~ϕ|t=0 = ~u0, ψ|t=T = 0.

In the paper, the global existence of a generalized solution of Problem A is proved. After that, we provide
Problem A with the initial data for viscosity µ in a special form

µε(x, 0) =
{

1, x ∈ Ω \ V0,
1/ε, x ∈ V0.

Here V0 is union of non-intersecting (by pairs) subdomains V
(l)
0 , l = 1, . . . , N with smooth (Lipschitz) boundaries

Σ(l)
0 .

Then we prove that the sequence of generalized solutions of Problem A tends as ε → 0 to a generalized
solution of the following problem on motion of solid bodies in non-Newtonian fluid governed by hydrodynamic
reactions.

Problem B. It is necessary to find locations of domains V (l)(t), l = 1, . . . , N , occupied by solid bodies,
velocity field ~u : QT \VT → R3 and pressure p∗ : QT \VT → R in the liquid component (here VT = {(V (t), t), t ∈
[0, T ]}, V (t) =

N⋃
l=1

V (l)(t)), satisfying the system which is composed of the equations describing motion of fluid

Dt~u +
∑3

i=1 uiDi~u− divW = ~f −∇p∗, (x, t) ∈ QT \ VT , (1.9)
div~u = 0, (x, t) ∈ QT \ VT , (1.10)

and of Euler equations that describe a motion of solid bodies governed by hydrodynamics reactions and are
written in inertial (immovable) Descartes coordinate system [1]:

m(l) d~v
(l)
c

dt
=

∫

V (l)
ρ(l) ~fdx +

∫

Σ(l)
T~ndσ, (1.11)

m(l)x(l)
c × d~v

(l)
c

dt
+ (J (l) + 2m(l)x(l)

c ~v(l)
c I −m(l)~v(l)

c ⊗ x(l)
c

−m(l)x(l)
c ⊗ ~v(l)

c )~ω(l) + (J (l) + m(l)x(l)2
c −m(l)x(l)

c ⊗ x(l)
c )

d~ω(l)

dt

=
∫

V (l)
ρ(l)(x× ~f)dx +

∫

Σ(l)
x× (T~n)dσ, l = 1, . . . , N. (1.12)

Remark 1.1. Viscosity of fluid is constant equal to 1 in the whole domain occupied by fluid.
Equations (1.9)–(1.12) are supplemented by initial and boundary conditions

V (l)(0) = V
(l)
0 , l = 1, . . . , N, (1.13)

~u(x, t)|t=0 = ~u0(x), x ∈ Ω \ V0, (1.14)
~u(x, t)|∂Ω = 0, (1.15)

~u(x, t)|∂VT = (~vc(t) + ~ω(t)× (x− xc(t)))|∂VT , (1.16)
~vc|t=0 = ~ac, ~ω|t=0 = ~ω0, xc|t=0 = x0

c , x ∈ V0. (1.17)

In (1.11)–(1.17) Σ(l) is a surface of a solid body V (l), ~n is the outward with respect to V (l) normal vector to
Σ(l), ρ(l) ≥ 0 is density distribution in a solid body, in this paper we set ρ(l) = 1 for all l, 1 ≤ l ≤ N ; m(l) > 0
is mass of a solid body, J (l) is inertia tensor of body related to main axes of inertia, J

(l)
ij = δij

∫
V (l) ρ(l)(x2

i−1 +

x2
i+1)dx, i, j = 1, 2, 3; ~v

(l)
c is velocity of inertia centre of a body, x

(l)
c is vector-radius of inertia centre of a body,
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~ω(l) is angular velocity of a body, T is the stress tensor in viscous fluid, Tij = −p∗δij + Wij , p∗ is the inner
pressure in fluid, ~f is vector of external mass forces.

In order to formulate the generalized solution of Problem B, let us introduce the function characterizing
locations of solid bodies:

Λ(x, t) =
{

1, x ∈ V (t),
0, x ∈ Ω \ V (t).

In terms of this function the initial condition (1.13) may be rewritten in form

Λ(x, 0) = Λ0(x) =
{

1, x ∈ V0,
0, x ∈ Ω \ V0.

(1.18)

In line with [2], also introduce several special classes of functions:

Char(E) is the class of characteristic functions of subsets of a set E,

Kδ(χ) = {~ψ ∈ H1
0 (Ω) |D(~ψ)(x) = 0, x ∈ Sδ(χ)}, K0(χ) = ∪δ>0Kδ(χ),

K(χ) = {~ψ ∈ H1
0 (Ω) |D(~ψ)(x) = 0, x ∈ S(χ)},

where χ ∈ Char(Ω), S(χ) = {x ∈ Ω |χ(x) = 1}, Sδ is δ-neighbourhood of a set S.
Definition 1.2. By a generalized solution of Problem B we call a pair of functions {~u,Λ} such that

~u ∈ L∞(0, T ; H)∩Lp(0, T ; V ), ~u ∈ K(Λ), |D(~u(t))| ≤ M for a. e. t ∈ [0, T ]; Λ ∈ Char(QT ); Λ ∈ C(0, T ; Lϑ(Ω)),
ϑ < ∞, and for which the integral inequality

∫

QT

Dt~ϕ(~ϕ− ~u)dxdt +
∫

QT

|D(~u)|p−2D(~u) : D(~ϕ− ~u)dxdt

−
∫

QT

~u⊗ ~u : ∇(~ϕ− ~u)dxdt ≥
∫

QT

~f(~ϕ− ~u)dxdt (1.19)

and the integral identity ∫

QT

Λ(Dtψ + ~u∇ψ)dxdt +
∫

Ω

Λ0ψ(x, 0)dx = 0 (1.20)

hold. Here ~ϕ ∈ W 1
p (0, T ; V ) is a test vector field satisfying the conditions ~ϕ ∈ K(Λ), |D(~ϕ)| ≤ M, ~ϕ|t=0 = ~u0,

and ψ ∈ C1(QT ) is a test function such that ψ|t=T = 0.
Remark 1.2. The demand ~u ∈ K(Λ) imposed in Definition 1.2 provides that evolution in time of V (l),

l = 1, . . . , N appears to be a motion of a solid body because any solution of equation D(~u)(x) = 0 has a form
~u(x) = ~vc + ~ω × ~x where ~vc and ~ω do not depend on x [3, Chapter III, §2.1].

Remark 1.3. The class of test functions for Inequality (1.19) depends on a solution of the problem. From
the justification of existence theorem for Problem B one will see that such choice of the class of test functions
is consistent and clear. Also, it is worth to mention that constructions of test functions depending on solutions
have already been considered in [2,4].

Remark 1.4. Some explanations concerning Definitions 1.1 and 1.2 and observations concerning interactions
between solid bodies and a solid body and ∂Ω will be given in Appendix.

2 Existence Of Generalized Solution To Problem A

Theorem 2.1. . Let ~f ∈ Lp′(0, T ; V ′), |D(~F )| ≤ M where Dt
~F = ~f ,

~u0 ∈ H, |D(~u0)(x)| ≤ M, p−1 + (p′)−1 = 1, p ≥ 11
5

. (2.1)

Then there exists a generalized solution to Problem A.

Proof. Verification of Theorem 2.1 consists of two stages. First, we formulate an auxiliary problem that
involves penalty term and then prove its solvability. Second, we justify that the sequence of solutions of the
auxiliary problem tends to a solution of Problem A.
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2.1 Auxiliary problem Aε

Consider the set L = {ϕ|ϕ ∈ V, |D(ϕ)| ≤ M, M = const}. Note that L is the closed convex bounded
set in V containing zero point. Consider the penalty operator β(~v) = {β1(~v), β2(~v), β3(~v)}, where βj(~v) =
−∑n

i=1 Di{([|D(~v)|2 −M2]+)
p
2−1Dij(~v)}. Here,

a+ =
{

a, if a > 0,
0, if a ≤ 0.

β(~v) is monotonous operator since it is the gradient of a convex functional

~v →
∫

Ω

([|D(~v)|2 −M2]+)p/2dx.

Also note that β(~v) is associated with the set L, i. e. {~v | ~v ∈ V, β(~v) = 0} = L.

Lemma 2.1. Let functions ~f , ~u0, µ0 and exponent p be satisfying the conditions in formulations of Theorem
2.1 and Problem A. Then for any fixed ε > 0 there exists pair of functions {~u(x, t), µ(x, t)} such that

~u ∈ Lp(0, T ; V ) ∩ L∞(0, T ; H0(Ω)), ~u′ ∈ Lp′(0, T ;V ′), µ ∈ L∞(QT ), m̃ ≤ µ(x, t) ≤ M̃ a. e. in QT ,

and the integral identities
∫
Ω

Dt~u~vdx +
∫
Ω

~a(µ, ~u)~vdx +
∫
Ω

~u⊗ ~v : ∇~udx + 1
ε

∫
Ω

β(~u)~vdx =
∫
Ω

~f~vdx for a. e. t ∈ [0, T ], (2.2)∫
QT

µ(Dtψ + ~u∇ψ)dxdt +
∫
Ω

µ0ψ(x, 0)dx = 0 (2.3)

hold. Here, ~v, ψ are test functions satisfying ~v ∈ V , ψ ∈ C1(QT ), ψ|t=T = 0.

Remark 2.1. Condition |D(~u0)(x)| ≤ M is not used in the forthcoming proof of Lemma 2.1. Consequently,
it may be dropped in the formulation of the lemma.

Proof of Lemma 2.1 is based on utilization of Galerkin method. Let {~wj} be the total orthonormal basis
in V 3(Ω) ∩H0(Ω). Let a solution of the following equations (composing the Galerkin system) be standing for
an approximate solution ~um(t), µm(t) of (2.2)–(2.3).

∫
Ω

Dt~um ~wjdx +
∫
Ω

~um(t)⊗ ~wj : ∇~um(t)dx +
∫
Ω

~a(µm, ~um(t))~wjdx + 1
ε

∫
Ω

β(~um(t))~wjdx =
∫
Ω

~f(t)~wjdx,(2.4)
where ~um(t) =

∑m
k=1 cmk(t)~wk(x), 1 ≤ j ≤ m. (2.5)

Here, cmk(t) ∈ C1([0, T ]) are unknown coefficients that should be defined.

Dtµm +
∑3

i=1 umiDiµm = 0, (2.6)
µm|t=0 = µ0m(x), (2.7)

where µ0m(x) ∈ C1(Ω), µ0m → µ0 in Lϑ(Ω), ϑ < ∞ is arbitrary, m̃ ≤ µ0m ≤ M̃ ,

~um(0) = ~u0m =
m∑

j=1

cj ~wj(x), ~u0m → ~u0 in H. (2.8)

In order to justify solvability of Galerkin system and to pass to a limit as m → ∞ we need to obtain some a
priori estimates for solutions of (2.4)–(2.8).

At first, since ~wj ∈ V 3(Ω) due to Sobolev embedding theorem one has ~wj ∈ C1
0 (Ω). Hence ~um ∈ C1(QT )

and, consequently, solution µm(x, t) of (2.6) has the representation [5] µm(x, t) = µ0m(ξm(τ, x, t)|τ=0), where
ξm(τ, x, t) is the solution of the Cauchy problem dξm

dτ = ~um(ξm, τ), ξ|τ=t = x. Since m̃ ≤ µ0m ≤ M̃ due to this
representation the following bound is valid

0 < m̃ ≤ µm(x, t) ≤ M̃ < ∞ (x, t) ∈ QT . (2.9)

Next,

∫

Ω

~a(µm, ~um)~umdx =
1
2

n∑

i,j=1

∫

Ω

µm|D(~um)|p−2(Di~umj + Dj~umi)Di~umjdx

=
∫

Ω

µm|D(~um)|pdx ≥ m̃

∫

Ω

|D(~um)|pdx,
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∫

Ω

β(~um)~umdx =
∫

Ω

([|D(~um)|2 −M2]+)
p
2−1|D(~um)|2dx ≥ 0,

∫

Ω

~um ⊗ ~um : ∇~um = 0.

Multiplying j-th equation in (2.4) over cj(t), summing over all j = 1, . . . , m, and taking three latter expressions
into account we deduce

1
2

d

dt
‖~um(t)‖22,Ω + m̃

∫

Ω

|D(~um(t))|pdx ≤
∫

Ω

~f(t)~um(t)dx. (2.10)

For any ~v ∈ W 1
p (Ω) such that ~v|∂Ω = 0 Korn’s inequality [3, Chapter III, §3.2] ‖~u‖1,p,Ω ≤ Ck(Ω)‖D(~u)‖p,Ω,

p > 1 is valid. This fact allows to introduce the special norm ‖ · ‖ in V by means of the equality

‖~v‖ = (
∫

Ω

|D(~v)|pdx)1/p.

Using this definition rewrite (2.10) in the form

1
2

d

dt
‖~um(t)‖22,Ω + m̃‖~um‖p ≤ Ck(Ω)‖~f(t)‖V ′‖~um‖. (2.11)

Integrating with respect to t over (0, t) we obtain

‖~um(t)‖22,Ω

2
+ m̃

∫ t

0

‖~um(s)‖pds ≤ Ck(Ω)
∫ t

0

‖~f(s)‖V ′‖~um(s)‖ds +
‖~u0m‖22,Ω

2
. (2.12)

Using simple arguments we deduce from this inequality the following a priori estimates.

‖~um‖Lp(0,T ;V ) ≤ Ck(Ω) max

{(‖~f‖Lp′ (0,T ;V ′)

m̃

)1/(p−1)

,

(‖~u0m‖22,Ω

2m̃

)1/p
}
≡ C1m ≤ C1, (2.13)

‖~um‖L∞(0,T ;H0(Ω))

≤ 2‖~f‖Lp′ (0,T ;V ′) max

{(
Ck(Ω)

m̃
‖~f‖Lp′ (0,T ;V ′)

)1/(p−1)

,

(‖~u0m‖22,Ω

2m̃

)1/p
}
≡ C2m ≤ C2, (2.14)

where C1, C2 do not depend on m. The following a priori estimate for ~u′m is obtained by utilizing the same
arguments as in [6, Chapter II, §5.2].

‖~u′m‖Lp′ (0,T ;V −3(Ω)) ≤ C3, C3 does not depend on m. (2.15)

Note that this estimate is not necessarily uniform with respect to ε.
For justification of solvability of Galerkin system, let us utilize Shauder principle of a fixed point. We

introduce the relevant completely continuous operator as follows.
Let Z = {~ψ(t) | ~ψ(t) ∈ C([0, T ]), ‖~ψ‖C([0,T ]) ≤ C2m, ~ψ = (cm1(t), . . . , cmm(t)), cmi(t) = cmi, i = 1, . . . , m}.

Clearly, Z is the bounded convex closed set in C([0, T ]). Let ~ψ0(t) = (c0
m1(t), . . . , c

0
mm(t)) is an element from

Z. Construct the vector ~u =
∑m

k=1 c0
mk(t)~wk(x). Evidently, ~u(t) ∈ C([0, T ]; C1(Ω)). For the given ~u(t) find µ̃

which is solution to the Cauchy problem for transport equation

Dtµ̃ + ~u∇µ̃ = 0, µ̃|t=0 = µ0m. (2.16)

Such solution exists, is unique and belongs to C1(QT ) [5].
Next, find a solution ~u1 =

∑m
k=1 c1

mk(t)~wk(x) to the system of ODEs
∫

Ω

~u′1 ~wjdx +
∫

Ω

~u(t)⊗ ~wj : ∇~u1(t)dx +
∫

Ω

~a(µ̃, ~u1(t))~wjdx +
1
ε

∫

Ω

β(~u1(t))~wjdx =
∫

Ω

~f(t)~wjdx. (2.17)

Repeating the considerations from [7, Chapter 3, §1.2] and basing on the estimate (2.14) we conclude that the
mapping A : ~ψ1(t) = A[~ψ0](t), ~ψ1(t) = {c1

m1(t), . . . , c
1
mm(t)}, constructed by virtue of formulae (2.17), (2.16)

appears to be the completely continuous operator that self-maps Z in the norm of C([0, T ]). Thus, there exists
a fixed point ~ψ in Z. Hence the system (2.4)–(2.8) has a solution for any m.

5



Our next goal is to fulfil limiting transition in Galerkin system as m → ∞. For this purpose we make use
of the compactness theorem form [6, Chapter 1, Theorem 5.1]. Since imbedding V → H(Ω) is compact due to
the estimates (2.13)–(2.15) one can extract a subsequence ~uν such that

~uν → ~u weakly in Lp(0, T ; V ), weak-star in L∞(0, T ; H(Ω)),
in Lp(0, T ;H(Ω)), a. e. in QT , (2.18)

Dt~uν → Dt~u weakly in Lp′(0, T ; V −3(Ω)),
1
ε
β(~uν) + ~a(µν , ~uν) → χ weakly in Lp′(0, T ; V ′).

Due to (2.18), (2.7) and convergence theorem for transport equations [8] we deduce

µν → µ in C([0, T ]; Lq(Ω)), 1 ≤ q < ∞. (2.19)

Repeating the arguments from [6, Chapter II, §5.2] we obtain
∫

Ω

(~u′~v + χ~v + ~u⊗ ~v : ∇~u)dx =
∫

Ω

~f~vdx ∀~v ∈ V. (2.20)

Observe that ~a is the gradient of the convex functional

Ψ : ~u → 1
p

∫

Ω

µ|D(~u)|pdx.

Hence, ~a(µ, ~u) is monotonuous function of ~u. Utilizing this fact, formula (2.19) and working out the considera-
tions analogous to those from [6, Chapter II, §5.1] we get

χ = ~a(µ, ~u) +
1
ε
β(~u). (2.21)

This identity together with (2.20) yields the assertion of Lemma 2.1.

2.2 Passage to limit as ε → 0

Denote by {~uε, µε} a generalized solution of Problem Aε that corresponds to a fixed value of parameter ε. Let
us obtain uniform with respect to ε a priori estimates on solutions of Problem Aε.

2.2.1 A priori estimates

Substituting ~v = ~uε into (2.2) and integrating over (0, t) with respect to t we deduce

‖~uε(t)‖22,Ω

2
+

∫ t

0

∫

Ω

µε|D(~uε)|pdxds +
1
ε

∫ t

0

∫

Ω

β(~uε)~uεdxds

≤ Ck(Ω)‖~f‖Lp′ (0,T ;V ′)

(∫ t

0

‖~uε(s)‖pds

)1/p

+
‖~u0‖22,Ω

2
. (2.22)

Hence,

‖~uε(t)‖22,Ω

2
+ m̃

∫ t

0

‖~uε(s)‖pds +
1
ε

∫ t

0

∫

Ω

β(~uε)~uεdxds

≤ Ck(Ω)‖~f‖Lp′ (0,T ;V ′)

(∫ t

0

‖~uε(s)‖pds

)1/p

+
‖~u0‖22,Ω

2
.

This yields
(∫ t

0

‖~uε(s)‖pds

)1/p

≤ max

{(
Ck(Ω)

m̃
‖~f‖Lp′ (0,T ;V ′)

)1/(p−1)

,

(‖~u0‖22,Ω

2m̃

)1/p
}
≡ C4. (2.23)

From (2.23) using Korn’s inequality we deduce a priori estimates

‖~uε‖Lp(0,T ;V ) ≤ Ck(Ω)max

{(‖~f‖L
p′ (0,T ;V ′)
m̃

)1/(p−1)

,

(
‖~u0‖22,Ω

2m̃

)1/p
}
≡ C5, (2.24)

‖~uε‖L∞(0,T ;H0(Ω)) ≤ 2‖~f‖Lp′ (0,T ;V ′)C4 ≡ C6, (2.25)

0 ≤ 1
ε

∫ T

0

∫
Ω

β(~uε)~uεdxds ≤ Ck(Ω)‖~f‖Lp′ (0,T ;V ′)C4 + ‖~u0‖22,Ω ≡ C7. (2.26)
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Using Hölder’s inequality and formula (2.23) we obtain

‖~a(µε, ~uε)‖Lp′ (0,T ;V ′) ≤ Cp−1
4 M̃. (2.27)

2.3 A priori estimate for Dt~uε

First, using a priori estimates (2.23)–(2.26) we evaluate the norm of the functional

~v → 1
ε

∫

QT

β(~uε)~vdxdt.

Consider
Iε =

1
ε

∫

Ω

β(~uε)~vdx =
1
ε

∫

Ω

([|D(~uε)|2 −M2]+)
p
2−1D(~uε) : D(~v)dx,

|Iε| ≤ max
Ω
|D(~v)|

(
1
ε

∫

Ω

([|D(~uε)|2 −M2]+)
p
2−1|D(~uε)|dx

)

≤ C(1)
s (Ω)‖~v‖H3(Ω)

(
1
ε

∫

Ω

([|D(~uε)|2 −M2]+)
p
2−1|D(~uε)|dx

)
.

The latter inequality is valid since

max
Ω
|D(~v)| ≤ C(1)

s (Ω)‖D(~v)‖W 2
2 (Ω), C(1)

s (Ω)‖D(~v)‖W 2
2 (Ω) ≤ C(1)

s (Ω)‖~v‖H3(Ω),

due to Sobolev embedding theorem. Here, C
(1)
s is the constant in Sobolev embedding theorem.

Applying Hölder’s inequality twice, we deduce
∫ T

0

|Iε(t)|dt ≤ C(1)
s (Ω)‖~v‖Ls(0,T ;H3(Ω))

1
ε

(∫ T

0

{∫

Ω

([|D(~uε)|2 −M2]+)
p
2−1|D(~uε)|dx

}r

dt

)1/r

,

where s−1 + r−1 = 1, 1 < s, r < ∞), and

{∫

Ω

([|D(~uε)|2 −M2]+)
p
2−1|D(~uε)|dx

}r

≤ (measΩ)r/s

∫

Ω

([|D(~uε)|2 −M2]+)r( p
2−1)|D(~uε)|rdx

= (meas Ω)r/s

∫

Ω

([|D(~uε)|2 −M2]+)
p
2−1([|D(~uε)|2 −M2]+)(r−1)( p

2−1)|D(~uε)|rdx ≤ . . . ,

let us make use of the simple bound [|D(~uε)|2 −M2]+ ≤ |D(~uε)|2,

. . . ≤ (measΩ)r/s

∫

Ω

([|D(~uε)|2 −M2]+)
p
2−1|D(~uε)|2(r−1)( p

2−1)+rdx.

Choosing r and s satisfying r = p(p−1)−1, which yields s = p, we obtain in view of previous investigations that
∫ T

0

|Iε(t)|dt ≤ C(1)
s (Ω)‖~v‖Lp(0,T ;V 3(Ω))(meas Ω)1/(p−1) 1

ε

∫ T

0

∫

Ω

β(~uε)~uεdxds. (2.28)

Finally, formulae (2.26), (2.28) yield

‖1
ε
β(~uε)‖Lp′ (0,T ;V −3(Ω)) ≤ C(1)

s (Ω)(measΩ)1/(p−1)C7 ≡ C8. (2.29)

Let us establish other two necessary bounds. Observe that

∣∣∣∣
∫

QT

~a(µε, ~uε)~vdxdt

∣∣∣∣ ≤
(∫ T

0

(∫

Ω

µε|D(~uε)|p−1dx

)p′

dt

)1/p′

‖∇~v‖Lp(0,T ;C(Ω))

≤ ‖µε‖1/p′

C([0,T ];Lp(Ω))‖D(~uε)‖1/(p−1)‖∇~v‖Lp(0,T ;C(Ω)). (2.30)

Due to Sobolev embedding theorem ‖~v‖Lp(0,T ;C(Ω)) ≤ C
(1)
s (Ω)‖~v‖Lp(0,T ;V 3(Ω)). Hence, using formula (2.23) we

deduce from (2.30) the following.
∣∣∣∣
∫

QT

~a(µε, ~uε)~vdxdt

∣∣∣∣ ≤ C(1)
s (Ω)‖µε‖1/p′

C([0,T ];Lp(Ω))C
p′
4 ‖~v‖Lp(0,T ;V 3(Ω)). (2.31)
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Since ‖µε‖C([0,T ];Lp(Ω)) = ‖µ0‖Lp(Ω), ‖µ0‖Lp(Ω) ≤ M̃(measΩ)1/p [7, Chapter 3, §2, Lemma 2.1] we have

‖~a(µε, ~uε)‖Lp′ (0,T ;V −3(Ω)) ≤ C(1)
s (Ω, p)M̃1/p′(measΩ)1/p p′Cp′

4 ≡ C9. (2.32)

Next,

∣∣∣∣
∫

QT

~uε ⊗ ~v : ∇~uεdxdt

∣∣∣∣ =
∣∣∣∣
∫

QT

~uε ⊗ ~uε : ∇~vdxdt

∣∣∣∣ ≤
(∫ T

0

max
Ω
|∇~v|dt

)
‖~uε‖2L∞(0,T ;H(Ω))

≤ C(1)
s (Ω)‖~v‖Lp(0,T ;V 3(Ω))(meas Ω)1/p′‖~uε‖2L∞(0,T ;H(Ω)). (2.33)

Let gε = ~uε ⊗ ~uε. In strength of the inequalities (2.25), (2.34) we obtain

‖gε‖Lp′ (0,T ;V −3(Ω)) ≤ C(1)
s (Ω)(measΩ)1/p′C2

6 ≡ C10. (2.34)

Using the bounds (2.28), (2.32) and (2.34) and taking into account that ~f ∈ Lp′(0, T ; V ′) in strength of formula
(2.2) we establish the bound on Dt~uε:

‖Dt~uε‖Lp′ (0,T ;V −3(Ω)) ≤ C8 + C9 + C10 + ‖~f‖Lp′ (0,T ;V ′)C
(2)
s (Ω, p) ≡ C11, (2.35)

where C
(2)
s (Ω, p) is the constant in the inequality in Sobolev embedding theorem:

‖~v‖Lp(0,T ;V ) ≤ C
(2)
s (Ω, p)‖~v‖Lp(0,T ;V 3(Ω)).

2.4 Passage to limit as ε → 0

2.4.1

Due to a priori estimates (2.24)–(2.27) and (2.35) one can extract a subsequence {~uε, µε} such that

~uε → ~u weakly in Lp(0, T ; V ), weak-star in L∞(0, T ; H(Ω)), (2.36)
~u′ε → ~u′ weakly in Lp′(0, T ;V −3(Ω)), (2.37)

~a(µε, ~uε) → χ∗ weakly in Lp′(0, T ;V ′). (2.38)

Using the compactness theorem [6, Chapter I, §5, Theorem 5.1] in strength of (2.36) and (2.37) we conclude
that

~uε → ~u in Lp(0, T ;H(Ω)) and a. e. in QT . (2.39)

From this limiting relation and convergence theorem for transport equations [8] we obtain

µε → µ in C([0, T ];Lϑ(Ω)). (2.40)

Besides, since m̃ ≤ µε(x, t) ≤ M̃ a. e. in QT the bound m̃ ≤ µ(x, t) ≤ M̃ is valid a. e. in QT .
In strength of the inequality

0 ≤
∫

Ω

([|D(~uε)|2 −M2]+)p/2dx ≤
∫

Ω

β(~uε)~uεdx

and the estimate (2.26) we obtain that
∫

QT

([|D(~uε)|2 −M2]+)p/2dxdt ≤ C7ε → 0 (2.41)

as ε → 0. Hence
|D(~u)(x, t)| ≤ M a. e. in QT . (2.42)

Passing to limit as ε → 0 in the integral identity
∫

QT

µε(Dtψ + ~uε∇ψ)dxdt +
∫

Ω

µ0ψ(x, 0)dx = 0

due to (2.36) and (2.40) we conclude that the integral identity (1.8) holds.
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2.4.2 Passage to limit as ε → 0 (completion). Utilization of monotonity method

Consider
Xε =

∫

QT

[Dt~ϕ(~ϕ− ~uε) + ~a(µε, ~uε)(~ϕ− ~uε) + ~uε ⊗ (~ϕ− ~uε) : ∇~uε − ~f(~ϕ− ~uε)]dxdt, (2.43)

where ~ϕ ∈ W 1
p (0, T ; V ), |D(~ϕ)| ≤ M a. e. in QT , and

either ~ϕ(0) = ~u0 or ‖~ϕ(T )‖22,Ω ≥ C2
6 − ‖~ϕ(0)± ~u0‖22,Ω. (2.44)

Due to identity (2.2) (note that β(~ϕ) = 0) since operator ~v → β(~v) is monotonous the equality

Xε =
∫

QT

[(Dt~ϕ−Dt~uε)(~ϕ− ~uε) +
1
ε
(β(~ϕ)− β(~uε))(~ϕ− ~uε)]dxdt ≥ 0 (2.45)

is valid. Combining (2.43) and (2.45) we obtain
∫

QT

[Dt~ϕ(~ϕ− ~uε) + ~a(µε, ~uε)~ϕ + ~uε ⊗ (~ϕ− ~uε) : ∇~uε − ~f(~ϕ− ~uε)]dxdt ≥
∫

QT

~a(µε, ~uε)~uεdxdt. (2.46)

In strength of (2.36), (2.38) and (2.39), passing to limit as ε → 0 in the inequality (2.46) we deduce
∫

QT

[Dt~ϕ(~ϕ− ~u) + χ∗~ϕ + ~u⊗ (~ϕ− ~u) : ∇~u− ~f(~ϕ− ~u)]dxdt ≥ lim inf
ε→0

∫

QT

~a(µε, ~uε)~uεdxdt. (2.47)

Proposition 2.1. The following inequality is valid.

lim inf
ε→0

∫

QT

~a(µε, ~uε)~uεdxdt ≥
∫

QT

~a(µ, ~u)~udxdt.

The Verification of Proposition 2.1 is based on the following well-known statement [9, Chapter 5].

Proposition 2.2. Let X be reflexive Banach space, ~vε → ~v weakly in X. Then the following inequality is valid.

lim inf
ε→0

‖~vε‖X ≥ ‖~v‖X .

Proof of Proposition 2.1.
∫

QT

~a(µε, ~uε)~uεdxdt =
∫

QT

µε|D(~uε)|pdxdt =
∫

QT

(µε − µ)|D(~uε)|pdxdt +
∫

QT

µ|D(~uε)|pdxdt ≡ Iε
1 + Iε

2 .

Here,

|Iε
1 | ≤

∫

QT

|µε − µ|(|D(~uε)|p −Mp)dxdt +
∫

QT

|µε − µ|Mpdxdt = Iε
11 + Iε

12.

Iε
12 → 0 in strength of (2.40), Iε

11 → 0 since Iε
11 ≥ − ∫

QT
|µε − µ|Mpdxdt → 0 as ε → 0, and

Iε
11 ≤

∫

QT

|µε − µ|[|D(~uε)|p −Mp]+dxdt ≤
∫

QT

|µε − µ|([|D(~uε)|2 −M2]+)p/2dxdt

≤ (M̃ − m̃)
∫

QT

([|D(~uε)|2 −M2]+)p/2dxdt ≤ (M̃ − m̃)C7ε → 0

as ε → 0 in strength of (2.41). Thus,
Iε
1 → 0 as ε → 0. (2.48)

Next, Iε
2 =

∫
QT
|µ1/pD(~uε)|pdxdt. Observe that functional

~v = {vi}9i=1 → ‖~v‖(1) ≡
[∫

QT

(
9∑

i=1

v2
i )p/2dxdt

]1/p

may be introduced as a norm in (Lp(QT ))9 and that µ1/pD(~uε) → µ1/pD(~u) weakly in (Lp(QT ))9 since the
norm ‖µ1/pD(~uε)‖(1) is uniformly with respect to ε bounded, and

∫

QT

µ1/pDij(~uε)dxdt →
∫

QT

µ1/pD(~uε)dxdt, i, j = 1, 2, 3,

9



since µ1/p ∈ Lp′(QT ) and ~uε → ~u weakly in Lp(0, T ; V ).
Hence, in view of Proposition 2.2

lim inf
ε→0

Iε
2 ≡ lim inf

ε→0
‖µ1/pD(~uε)‖(1) ≥ ‖µ1/pD(~u)‖(1) ≡

∫

QT

~a(µ, ~u)~udxdt. (2.49)

Thus, from (2.47) we conclude that
∫

QT

[Dt~ϕ(~ϕ− ~u) + χ∗~ϕ + ~u⊗ (~ϕ− ~u) : ∇~u− ~f(~ϕ− ~u)]dxdt ≥
∫

QT

~a(µ, ~u)~udxdt. (2.50)

Now, let us prove that
χ∗ = ~a(µ, ~u). (2.51)

Observe
Yε =

∫

QT

µ(|D(~uε)|p−2D(~uε)− |D(~γ)|p−2D(~γ)) : D(~uε − ~γ)dxdt, (2.52)

where ~γ is an arbitrary smooth function. Due to monotonity of the operator ~v → ~a(µ,~v) we deduce from (2.52)
that

lim inf Yε ≥ 0. (2.53)

Combining (2.46), (2.52) and (2.53) and passing to limit as ε → 0 we arrive at
∫

QT

Dt~ϕ(~ϕ− ~u)dxdt +
∫

QT

χ∗~ϕdxdt−
∫

QT

~u⊗ ~u : ∇~ϕdxdt−
∫

QT

~f(~ϕ− ~u)dxdt

−
∫

QT

χ∗~γdxdt−
∫

QT

µ|D(~γ)|p−2D(~γ) : D(~u− ~γ)dxdt ≥ lim inf Yε ≥ 0. (2.54)

Substitute a test function −~ϕ into the inequality (2.50) on the place of ~ϕ (what is legal in strength of condition
(2.44)):

−
∫

QT

Dt~ϕ(~ϕ + ~u)dxdt−
∫

QT

χ∗(~ϕ + ~u)dxdt−
∫

QT

µ|D(~u)|pdxdt +
∫

QT

~u⊗ ~u : ∇~ϕdxdt

≥ −
∫

QT

~f(~ϕ + ~u)dxdt.

This inequality together with the formula (2.54) gives

−
∫

QT

χ∗~γdxdt−
∫

QT

µ|D(~γ)|p−2D(~γ) : D(~u− ~γ)dxdt

≥ −2
∫

QT

~f~udxdt + 2
∫

QT

Dt~ϕ~udxdt +
∫

QT

µ|D(~u)|pdxdt. (2.55)

Substitute as a test function into (2.50) the following expression: ~ϕ = ((ϑm~u) ∗ ρn ∗ ρn)ϑm, n > 2m. Here ϑm,
ρn are regularizing sequences defined as follows: ϑm is continuous piecewise linear function on [0, T ], ϑm(t) = 1
if 0 + 2

m < t < T − 2
m , ϑm(t) = 0 if t > T − 1

m and t < 1
m ; ρm is regularizing sequence in D(R), ρn(t) = ρn(−t),∫

R ρn(t)dt = 1, suppρn ⊂ [−n−1, n].
Passing firstly to the limit as n → ∞, then as m → ∞, and repeating the considerations from [6, Chapter

2, §5.2] we establish that
∫

QT
χ∗~udxdt ≥ ∫

QT
µ|D(~u)|pdxdt ≥ 0. Hence, − ∫

QT
χ∗~udxdt ≤ ∫

QT
µ|D(~u)|pdxdt.

Formula (2.55) and this inequality lead to
∫

QT

(χ∗ − ~a(µ,~γ))(~u− ~γ)dxdt ≥ −2
∫

QT

~f~udxdt + 2
∫

QT

~ϕt~udxdt.

Imposing ~ϕt = ~f (this is legal due to conditions in the statement of Theorem 2.1) we have
∫

QT

(χ∗ − ~a(µ,~γ))(~u− ~γ)dxdt ≥ 0 ∀~γ ∈ Lp(0, T ; V ).

By standard arguments [6], this yields the formula (2.51).
Thus, the formulae (2.42), (2.44), (2.50) and (2.51) show that the integral identity (1.7) holds. Hence, the

pair of functions {~u, µ} form a generalized solution of Problem A. Theorem 2.1 is proved.

10



3 Solvability Of Problem On Motion Of Solid Bodies
In Non-Newtonian fluid

We prove the following existence theorem.

Theorem 3.1. Let ~u0 ∈ H0(Ω) ∩K(Λ0), |D(~u0)| ≤ M a. e. in QT ,

~f ∈ Lp′(0, T ; V ′), |D(~F )| ≤ M, where Dt
~F = ~f, p−1 + (p′)−1 = 1, p ≥ 11

5
. (3.1)

Then there exists a generalized solution to Problem B.

As it has already been noticed in Section 1 of the paper, the main idea of justification of Theorem 3.1
consists of utilization of solidification method.

3.1 Additional regularity properties of solutions of Problem A

In order to prove Theorem 3.1, we will use some properties of solutions of Problem A that are not involved in
Definition 1.1.

Lemma 3.1. . Let ~u ∈ {~v | ~v : Ω× [0, T ] → R3, |D(~v)(x, t)| ≤ M a. e. in QT }. Then the estimate

|~u(x′)− ~u(x′′)| ≤ C12M |x′ − x′′|(ln |x′ − x′′|+ 1), C12 = C12(Ω)

is valid for any rather close to each other point x′, x′′ ∈ Ω.

Proof. Let us utilize the integral representation of the components of velocity vector in terms of the
components of deformation tensor [3, Chapter III, §2]:

ui(x′)− ui(x′′) =
∫

Ω

3∑

k,l=1

[Rkl
i (x′, y)−Rkl

i (x′′, y)]Dkl(~u)(y)dy.

Here, Rkl
i (x, y) = (ωi

kl(x, y)/|x − y|n−1) − θi
kl(x, y), where ωi

kl(x, y) are in C∞(Rn \ {x}), and are positively
homogeneous functions of zero order with respect to x− y; θi

kl ∈ C∞(Rn ×Rn). The condition in statement of
the lemma follows to the estimate

|~u(x′)− ~u(x′′)| ≤ M

∫

Ω

|R(x′, y)−R(x′′, y)|dy.

Introduce B = {y| |y−x| ≤ 2d, d = |x′−x′′|}. The assertion of Lemma 3.1 is immediately achieved in strength
of the bounds

I1 =
∫

B

|R(x′, y)−R(x′′, y)|dy ≤ C13 d,

∫

Ω\B
|R(x′, y)−R(x′′, y)|dy ≤ C14 d(1 + ln |d|).

Lemma 3.2. Let function ~u : Ω× [0, T ] → R3 be such that |D(~u)(x, t)| ≤ M for a. e. (x, t) ∈ QT , ~u|∂Ω = 0 for
a. e. t ∈ [0, T ]. Then ~u ∈ L∞(0, T ; C(Ω)) ∩ L∞(0, T ;W 1

ϑ(Ω)) ∀ ε < ∞, and

max
Ω
|~u| ≤ C

(3)
s (Ω)Ck(Ω, 1, ε)M ≡ C15 for a. e. t ∈ [0, T ], (3.2)

‖~u‖L∞(0,T ;W 1
ε (Ω)) ≤ Ck(Ω, 1, ε)M T 1/ε ≡ C16(ε). (3.3)

Proof. In strength of Korn’s inequality and the boundary condition ~u|∂Ω = 0 the bound

‖~u‖W 1
ε (Ω) ≤ Ck(Ω, 1, ε)‖D(~u)‖ε,Ω ≤ Ck(Ω, 1, ε)M

is valid for a. e. t ∈ [0, T ]. Due to Sobolev embedding theorem

‖~u‖C(Ω) ≤ C(3)
s (Ω)‖~u‖W 1

ε (Ω) for a. e. t ∈ [0, T ], ε > 3.
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3.2 Proof of Theorem 3.1

3.2.1 Choice of initial data

We consider Problem A provided with initial data of the following form.

µε(x, 0) =
{

1, x ∈ Ω \ V0,
1/ε, x ∈ V0,

(3.4)

and function ~uε(x, 0) = ~u0(x) satisfies the conditions of Theorem 3.1.
Due to Theorem 2.1 there exists a generalized solution of Problem A provided with such initial data. Denote

this solution by {~uε(x, t), µε(x, t)}.

3.2.2 Shift operator

In order to study the evolution of initial data (3.4) in time and space, introduce the shift operator Φt1,t2
ε as

follows. Consider Cauchy problem for kinematic equation concerning motion of a particle

dyε

dt
= ~uε(yε, t), (yε, t) ∈ QT , yε|t=t1 = x.

The mapping Φt1,t2
ε : Ω → Ω is defined by the formula Φt1,t2

ε (x) = yε(t2) .
Since ~uε ∈ L∞(0, T ;C(Ω)) in view of Lemma 3.2, div ~uε = 0, and ~uε|∂Ω = 0, due to Carathéodory theorem

[10, Chapter II, §5.3] this mapping is absolutely continuous in QT for every ε > 0, and, in view of Euler’s formula
[11, Chapter II, §5, Formula (II.5-8)], Jacobian J of the transformation x → Φt1,t2

ε (x) is identically equal to one
for all t1, t2 ∈ [0, T ]. Hence, the solution µε(x, t) of the transport equation (1.8) admits the representation in
terms of operator Φt1,t2

ε in the form

µε(x, t) = µ0
ε(Φ

t,0
ε (x)) =

{
1, x ∈ Φ0,t

ε (Ω \ V0),
1/ε, x ∈ Φ0,t

ε (V0),
(3.5)

Denote Vε(t) = Φ0,t
ε (V0). Consider the Cauchy problem for transport equation

DtΛε + ~uε∇Λε = 0, Λε(x, 0) = Λ0(x) =
{

1, x ∈ V0,
0, x ∈ Ω \ V0.

(3.6)

Its solution is understood in sense of the integral identity
∫

QT

Λε(Dtψ + ~uε∇ψ)dxdt +
∫

Ω

Λ0ψ(x, 0)dx = 0, (3.7)

where ψ is a test function satisfying ψ ∈ C1(QT ), ψ|t=T = 0.
Solution of the equation (3.6) admits the representation

Λε(x, t) = Λ0
ε(Φ

t,0
ε (x)) =

{
1, x ∈ Vε(t),
0, x ∈ Ω \ Vε(t).

Futher on, we will use the transport equation (3.6) in order to describe the evolution of the set Vε because it
allows to formulate conveniently the question about motion of bodies in terms of functions belonging to the
class Char(Ω).

The following property of the shift operator is of great importance for investigation of limiting transition as
ε → 0.

Lemma 3.3. (Hölder’s continuity of the shift operator). Let ~u(x, t) be satisfying the conditions

‖~u‖L∞(0,T ;C(Ω)) ≤ C16, |~u(x′, t)− ~u(x′′, t)| ≤ C17M |x′ − x′′|(ln |x′ − x′′|+ 1) for a. e. t ∈ [0, T ].

Then for rather close to each other moments of time t, τ ∈ [0, T ] and rather close to each other points of space
x1, x2 ∈ Ω the following bounds are valid

|Φt,0(x1)− Φt,0(x2)| ≤ K|x1 − x2|δ, |Φt,0(x)− Φτ,0(x)| ≤ K|t− τ |δ, x ∈ Ω,

|Φ0,t(x1)− Φ0,t(x2)| ≤ K|x1 − x2|δ, |Φ0,t(x)− Φ0,τ (x)| ≤ K|t− τ |δ, x ∈ Ω,

where K = exp(1− e−C16T ), δ = exp(−C17MT ).

Proof of the lemma in the case Ω ⊂ R2 can be found in [5]. For our case Ω ⊂ R3, it is sufficiently to repeat
the arguments from [5].
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3.2.3 Passage to limit as ε → 0

In strength of Lemma 3.2 we have
‖~uε‖L∞(0,T ;V ) ≤ C16(p). (3.8)

Hence, extracting the proper subsequence we arrive at

~uε → ~u weak-star in L∞(0, T ; V ). (3.9)

Due to Lemma 3.3 the sets {Φt,0
ε (x)}ε>0, {Φ0,t

ε (x)}ε>0 consisting of Φt,0
ε (x), Φ0,t

ε (x) ∈ C(QT ; R3), consequently,
are uniformly bounded and equicontinuous with respect to ε. Hence, we conclude

Φt,0
ε (x) → Φt,0(x) in C(QT ), (3.10)

Φ0,t
ε (x) → Φ0,t(x) in C(QT ), (3.11)

where operator Φt1,t2 is associated with vector field ~u(x, t). These limiting expressions yield

Λε → Λ in Lϑ(QT ), ϑ < ∞, Λ(x, t) = Λ0(Φt,0(x)), (3.12)

since Λε(x, t) = Λ0(Φt,0
ε (x)) ∈ Lϑ(QT ) and the formula [12, Chapter 3, §2.2]

‖Λ0(Φt,0(x) + (Φt,0
ε (x)− Φt,0(x)))− Λ0(Φt,0(x))‖ϑ,Ω → 0

is valid. Further on, we will utilize the following statement.

Lemma 3.4. For any σ > 0 there exists ε0 > 0 such that S(Λε(t)) ⊂ Sσ(Λ(t)) for all ε < ε0 and t ∈ [0, T ].

In strength of (3.11), assertion of the lemma is valid due to the representation S(Λε(t)) = Φ0,t
ε (S(Λ0)).

In order to fulfil limiting transition as ε → 0 in the inequality (1.7), it is necessary to obtain additional
compactness property for {~uε}.

Let X be a Hilbert space supplied with inner product (·, ·)X , Y be a closed subspace of X, what particularly
means that Y is a Hilbert space supplied with inner product (·, ·)X . Let P is an orthogonal projector from X
in Y , assume also PX = Y . Let X0, X1 be Banach spaces such that X0 ⊂ X, Y ⊂ X1. Let these embeddings
be dense. Besides, let X0 ⊂ X compactly. In view of all these suppositions, the following lemma is true [2].

Lemma 3.5. Let {~vk} be a sequence satisfying

‖~vk‖Lp(0,T ;X0) ≤ C, ‖Dt(P~vk)‖Lp′ (0,T ;X1) ≤ C,

1 < p < ∞. Then the sequence {P~vk} is compact in Lp(0, T ; X).

Introduce Gσ = {(x, t) ∈ QT |x ∈ Ω \ Sσ(Λ(t)), t ∈ [0, T ]}. Fix σ > 0 and consider an arbitrary cilinder
E = A × [t1, t2], t1, t2 ∈ [0, T ], E ⊂ Gσ. Let PA: H(A) → H0(A) be an orthogonal projector. Any function
~v ∈ V (A) admits the representation [13]

~v = PA~v +∇αA, where ∆αA = 0 (x ∈ A). (3.13)

Proposition 3.1. Sequence {Dt(PA~uε)} is uniformly bounded in Lp′(t1, t2, V −3(A)).

Proof. Turn back to investigation of Problem A. Substituting into (2.2) vector ~v ∈ V 3(A) ∩H0(A) on the
place of test function we arrive at

∫

A

(DtPA~uε)~vdx +
∫

A

~a(µε, ~uε)~vdx +
∫

A

~uε ⊗ ~v : ∇~uεdx +
1
ε

∫

A

β(~uε)~vdx =
∫

A

~f~vdx, (3.14)

because
∫

A

(Dt~u)~vdx =
∫

A

(DtPA~uε + Dt∇αε
A)~vdx =

∫

A

(DtPA~uε)~vdx−
∫

A

(Dtα
ε
A)~vdx, div~v = 0.

Note that here ε is a parameter from outlinings that concern Problem A.
Integrate (3.14) with respect to t over (t1, t2). Following the arguments in Subsection 2.2 we establish

‖DtPA~uε‖Lp′ (t1,t2,V −3(A)) ≤ C8 + C(1)
s (Ω)Cp′

4 ‖µε‖1/p′

C([t1,t2];Lp(A)) + C10 + ‖~f‖Lp′ (0,T ;V ′)C
(2)
s (Ω, p).
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Here, passing to limit as ε → 0 and using the formula (2.40) we conclude that the following estimate for solution
of Problem A takes place.

‖DtPA~u‖Lp′ (t1,t2,V −3(A)) ≤ C8 + C(1)
s (Ω)Cp′

4 ‖µ‖1/p′

C([t1,t2];Lp(A)) + C10 + ‖~f‖Lp′ (0,T ;V ′)C
(2)
s (Ω, p). (3.15)

Turn back to studying of Problem B. Observe that the constants C4, C8 and C10 do not depend on ess supµ.
Due to Lemma 3.4 and the choice of the set E we have µε = 1 on E for all ε < ε0. Hence, ‖µε‖C([t1,t2];Lp(A)) ≤
(meas A)1/p. Due to this the assertion of the proposition flows from the formula (3.15).

In strength of (3.9) and (3.12), limiting transition as ε → 0 in the integral identity (3.7) does not cause any
difficulties, and we get ∫

QT

Λ(Dtψ + ~u∇ψ)dxdt +
∫

Ω

Λ0ψ(x, 0)dx = 0, (3.16)

where ψ ∈ C1(QT ) is a test function satisfying ψ|t=T = 0. Besides, we have

Λ ∈ Char(QT ). (3.17)

Now, we should pass to limit in the inequality

∫

QT

Dt~ϕ(~ϕ− ~uε)dxdt +
∫

QT

µε|D(~uε)|p−2D(~uε) : D(~ϕ− ~uε)dxdt

−
∫

QT

~uε ⊗ ~uε : ∇(~ϕ− ~uε)dxdt ≥
∫

QT

~f(~ϕ− ~uε)dxdt. (3.18)

Recall that test function ~ϕ satisfies the conditions defined in (2.44), that is either ~ϕ(0) = ~u0 or ‖~ϕ(T )‖22,Ω ≥
C2

6 − ‖~ϕ(0)± ~u0‖22,Ω.
In order to pass to the limit in nonlinear term due to Lemma 3.4 it is enough to show that

lim
ε→0

∫

QT

(~uε ⊗ ~uε) : D(~ϕ)dxdt =
∫

QT

(~u⊗ ~u) : D(~ϕ)dxdt (3.19)

for any smooth test function ~ϕ such that D(~ϕ) = 0 if x ∈ Sσ(Λ), σ > 0. Let us repeat the arguments from [2]
that have been done with the aim to study the problem similar to ours.

Choose ~γ : QT → R3 such that D(~γ) ≡ 0 in QT and ~γ(x, t) = ~ϕ(x, t) if x ∈ Sσ(Λ). Since the set consisting of
~uε is uniformly bounded in L2(0, T ; V 1(Ω)) we have due to [7, Chapter 1, Lemma 7.1] that for all δ > 0, β > 0
there exists the function ~g ∈ L2(0, T ; V 1(ω)) with the properties ~g(x, t) = 0 if x ∈ Ω \ (∂Ω)δ, ~g(x, t) = ~γ(x, t) if
x ∈ ∂Ω, and ∣∣∣∣

∫

QT

(~uε ⊗ ~uε) : D(~g)dxdt

∣∣∣∣ ≤ β‖~uε‖2L2(0,T ;V 1(Ω)). (3.20)

Let ~w = ~ϕ− ~γ. We have

∫

QT

(~uε ⊗ ~uε) : D(~ϕ)dxdt

=
∫

QT

(~uε ⊗ ~uε) : D(~w)dxdt =
∫

QT

(~uε ⊗ ~uε) : D(~w + ~g)dxdt−
∫

QT

(~uε ⊗ ~uε) : D(~g)dxdt. (3.21)

Due to the properties of functions ~ϕ, ~w, ~γ and ~g on Sσ(Λ) and on ∂Ω, the equality ~w + ~g = 0 takes place
(provided with the proper choice of δ). Also, last term in (3.21) can be done arbitrary small in strength of
arbitrariness of β. These conclusions mean that it is sufficiently to verify the equality (3.19) just for the test
functions ~ϕ that vanish on Sσ(Λ) and on ∂Ω.

In strength of Proposition 3.1 and Lemma 2.5, PA~uε → PA~u in Lp([t1, t2],H(A)). Besides, ∇αε
A → ∇αA

weakly in Lp([t1, t2], L2(A)) and ~u = PA~u +∇αA if (x, t) ∈ E. Hence,

lim
ε→0

∫

E

(PA~uε ⊗ PA~uε) : D(~ϕ)dxdt =
∫

E

(PA~u⊗ PA~u) : D(~ϕ)dxdt

for any ~ϕ ∈ Lp(0, T ; V ), ~ϕ = 0 if (t, x) 6∈ E.
Let us show that

∫

E

(∇αε
A ⊗∇αε

A) : D(~ϕ)dxdt =
∫

E

(∇αA ⊗∇αA) : D(~ϕ)dxdt = 0.
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Indeed, as far as ~ϕ(x, t) = 0 if x ∈ ∂A, div~ϕ = 0, we have

∫

A

(∇αε
A ⊗∇αε

A) : D(~ϕ)dx = −
∫

A

div (∇αε
A ⊗∇αε

A) · ~ϕ)dx

= −
∫

A

(∆αA∇αA +
1
2
∇|∇αA|2) · ~ϕdx =

∫

A

1
2
|∇αA|2div ~ϕdx = 0.

This yields

lim
ε→0

∫

E

(~uε ⊗ ~uε) : D(~ϕ)dxdt =
∫

E

(~u⊗ ~u : D(~ϕ)dxdt.

Since E is arbitrary and the set Gσ admits an approximation by a countable set of cilinders like E, we conclude
that the formula (3.19) holds true.

In strength of the estimate (3.8) and the formula (3.9) we see
∫

QT
~ϕ′(~ϕ− ~uε)dxdt → ∫

QT
~ϕ′(~ϕ− ~u)dxdt, (3.22)

∫
QT

~f(~ϕ− ~uε)dxdt → ∫
QT

~f(~ϕ− ~u)dxdt, (3.23)
∫

QT
~a(µε, ~uε)~ϕdxdt → ∫

QT
χ∗∗~ϕdxdt, (3.24)

where ~ϕ ∈ W 1
p (0, T ;V )∩Kσ(Λ). Substituting into (3.18) some admissible function ~ϕ ∈ Kσ(Λ) we arrive at the

bound ∫

QT

Λε|D(~uε)|pdxdt ≤ εC18, where C18 = C18(C16(p), ‖~ϕ‖W 1
p (0,T ;V )), (3.25)

or, equivalently, ∫ T

0

∫

S(Λε)

|D(~uε)|pdxdt ≤ εC18. (3.26)

Due to Lemma 3.4 we deduce from (3.26) that

~u ∈ K(Λ) for a. e. t ∈ [0, T ]. (3.27)

Consider
∫

QT

~a(µε, ~uε)~uεdxdt =
∫

QT

µε|D(~uε)|pdxdt =
∫

QT

(1− Λε)|D(~uε)|pdxdt +
∫

QT

Λεε
−1|D(~uε)|pdxdt

≥
∫

QT

(1− Λε)|D(~uε)|pdxdt ≥
∫

QT

|D(~uε)|pdxdt− εC19.

Passing to limit as ε → 0 in strength of (3.8) and Proposition 2.2, we see

lim inf
ε

∫

QT

~a(µε, ~uε)~uεdxdt ≥
∫

QT

|D(~u)|pdxdt. (3.28)

Thus, in view of (3.19), (3.22)–(3.24) and (3.28), passing to limit as ε → 0 in (3.18) we establish
∫

QT

~ϕ′(~ϕ− ~u)dxdt +
∫

QT

χ∗∗~ϕdxdt−
∫

QT

|D(~u)|pdxdt−
∫

QT

~u⊗ ~u : ∇(~ϕ− ~u)dxdt ≥
∫

QT

~f(~ϕ− ~u)dxdt (3.29)

for all ~ϕ ∈ W 1
p (0, T ; V ) ∩ Kσ(Λ) satisfying the bound |D(~ϕ)| ≤ M and the condition (2.44). Since σ > 0 is

arbitrary, and surfaces ∂S(Λ) of solid bodies are Lipschitz continuous we conclude on the base of [2, Proposition
2.1] that the inequality (3.29) hold true for ~ϕ ∈ K(Λ) as well.

Finally, repeating the arguments from Subsection 2.4 we get χ∗∗ = ~a(1, ~u).
Hence, the integral inequality (1.19) holds true. Proof of Theorem 3.1 is completed.

4 Appendix

4.1 Consistency of Definitions 1.1 and 1.2

Here, we outline explanations concerning the definitions of generalized solutions to Problems A and B. Namely,
the following statements will be proved.

15



Proposition 4.1. Let generalized solution {~u, µ} of Problem A be smooth. Then (1.7) and (1.8) yield the
identities (1.1) and (1.2).

Proposition 4.2. Let in generalized solution {~u, Λ} of Problem B vector-function ~u be smooth. Then the
inequality (1.19) yields the identities (1.9), (1.11) and (1.12).

Proof of Proposition 4.1. Easy to see that, if ~v, ~u|∂Ω = 0, then the equality
∫

Ω

µW : D(~v − ~u)dx = −
∫

Ω

div(µW )(~v − ~u)dx,

holds true. Thus, if µW ∈ ∂Φ(D(~u)) then −div(µW ) ∈ ∂Φ(1)(~u), where the functional Φ(1) has a form
Φ(1)(~v) = 1

p

∫
Ω

Q(x,~v(x))dx. Here,

Q(x,~v(x)) =
{

µ(x)|D(~v(x))|p, if |D(~v)| ≤ M,
+∞, if |D(~v)| > M.

So, the equality (1.1) is equivalent to the following one.

−(Dt~u +
3∑

i=1

uiDi~u +∇p∗ − ~f) ∈ ∂Φ(1)(~u). (4.1)

Now, consider the inequality (1.7) which can be written in the form

∫

QT

~u′(~ϕ− ~u)dxdt +
∫

QT

(~ϕ′ − ~u′)(~ϕ− ~u)dxdt−
∫

QT

div(µ|D(~u)|p−2D(~u))(~ϕ− ~u)dxdt

−
∫

QT

~u⊗ ~u : ∇(~ϕ− ~u)dxdt ≥
∫

QT

~f(~ϕ− ~u)dxdt.

The latter inequality yields that, if ‖~ϕ(T )− ~u(T )‖2,Ω = 0, then

−
∫

QT

div(µ|D(~u)|p−2D(~u))(~ϕ− ~u)dxdt ≥ −
∫

QT

(Dt~u +
3∑

i=1

uiDi~u +∇p∗ − ~f)(~ϕ− ~u)dxdt. (4.2)

Note that,if |D(~u)| ≤ M , then {Φ(1)′(~u)} = ∂Φ(1)(~u) where Φ(1)′ = div(µ|D(~u)|p−2D(~u)) is the Gâteaux deriva-
tive of Φ(1) at a point ~u [14]. Hence, in strength of (4.2), the inclusion (4.1) is valid, what amounts to the fact
that the equality (1.1) hold true. Finally, the equality (1.2) is a simple consequence of the integral identity
(1.8).
Proof of Proposition 4.2. Since ~ϕ, ~u = 0 if x ∈ ∂Ω, and ~u, ~ϕ ∈ K(Λ), the equality

∫ T

0

dt

∫

Ω

|D(~u)|p−2D(~u) : D(~ϕ− ~u)dx

= −
∫ T

0

dt

∫

∂V (t)

(|D(~u)|p−2D(~u)~n) : (~ϕ− ~u)dσ −
∫ T

0

dt

∫

Ω\V (t)

div(|D(~u)|p−2D(~u))(~ϕ− ~u)dx (4.3)

holds true. Here, ~n is the unit normal to ∂V (t) directed into Ω\V (t). Proceeding the arguments from the proof
of Proposition 4.1 and using the formula (4.3) we deduce from (1.19) the following.

−
∫ T

0

dt

∫

∂V (t)

([−Ip∗ + |D(~u)|p−2D(~u)]~n)(~ϕ− ~u)dσ −
∫ T

0

dt

∫

Ω\V (t)

div(−Ip∗ + |D(~u)|p−2D(~u))(~ϕ− ~u)dx

≥ −
∫

QT

(Dt~u +
3∑

i=1

uiDi~u− ~f)(~ϕ− ~u)dxdt. (4.4)

Introducing into (4.4) on the place of a test function a function ~ϕ which we demand to satisfy ~ϕ = ~u on VT we
arrive at

−
∫ T

0

dt

∫

Ω\V (t)

div(−Ip∗+ |D(~u)|p−2D(~u))(~ϕ−~u)dx ≥ −
∫ T

0

dt

∫

Ω\V (t)

(Dt~u+
3∑

i=1

uiDi~u− ~f)(~ϕ−~u)dx. (4.5)
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Repeating the arguments from the proof of Proposition 4.1 we deduce the equality (1.9) from (4.5).
Next, since ~u is in K(Λ) and is smooth there exists δ > 0 such that |D(~u)| ≤ M/2 if x ∈ Sδ(Λ).
Impose in (4.4) and (4.5) that ~ϕ = ~u ± ~ψ where supp~ψ ∈ Sδ(Λ), |D(~ψ)| ≤ M/2, ~ψ ∈ K(Λ), ~ψ|t=0 = 0.

Clearly, such choise of test function is legal. Due to arbitrariness of ~ψ (within the imposed demands) the
formulae (4.4) and (4.5) yield

−
∫ T

0

dt

∫

∂V (t)

([−Ip∗ + |D(~u)|p−2D(~u)]~n)~ψdσ =
∫ T

0

dt(Dt~u +
3∑

i=1

uiDi~u− ~f)~ψdx. (4.6)

We have |D(~u)|p−2D(~u) ∈ ∂Φ(D(~u)) because |D(~u)| ≤ M . Hence, (4.6) gives the following.

∫ T

0

dt

∫

V (t)

(Dt~u +
3∑

i=1

uiDi~u)~ψdx =
∫ T

0

dt

∫

∂V (t)

(T~n)~ψdσ +
∫ T

0

dt

∫

V (t)

~f ~ψdx, (4.7)

where T is the stress tensor in the fluid, T = −Ip∗ + W .
Substituting into (4.7) the explicit forms

~u = ~v(l)
c (t) + ~ω(l)(t)× x, ~ψ = ~ψ(l)

c (t) + ~ψ(l)
ω (t)× x, (x, t) ∈ V (l)(t),

l = 1, . . . , N (N is the quantity of floating solid bodies) of ~u, ~ψ ∈ K(Λ) (see Remark 1.2), due to arbitrariness
of ~ψ

(l)
c (t) and ~ψ

(l)
ω (t) we get (1.11) and (1.12) from (4.7).

4.2 On properties of interactions between solid bodies and between a solid body
and ∂Ω

Due to Lemma 3.1, velocity field ~u(x, t) is almost-Lipschitz continuous, i. e.

|~u(x′, t)− ~u(x′′, t)| ≤ C12M |x′ − x′′|(ln |x′ − x′′|+ 1) ≡ ϕ̃(|x′ − x′′|)
for a. e. t ∈ [0, T ], for rather close to each other points x′, x′′. Suppose |x′ − x′′| ≤ a = const. Since∫ a

ε
dv

ϕ̃(v) →∞ as ε → 0, due to Osgood uniqueness theorem every point (x0, t0) in QT holds not more than just
one integral curve of the equation

dy

dt
= ~u(y, t), (y, t) ∈ QT . (4.8)

Hence, if x0 ∈ V (1)(t0), x0 ∈ V (2)(t0), t0 ∈ [0, T ], then y(t) ∈ V (1)(t)∩ V (2)(t) for all t ∈ [0, T ] where y(t) is the
solution of the equation (4.8) provided with Cauchy data y(t0) = x0. Thus, if two bodies get in touch with each
other at some moment of time t0 ∈ [0, T ] then they are in touch during the whole interval [0, T ].

In strength of ~u ∈ K(Λ) and due to Remark 1.2, the equalities ~u(x, t) = ~u
(1)
c (t) + ~ω(1)(t) × (x − x

(1)
c (t)),

(x, t) ∈ V
(1)
T , ~u(x, t) = ~u

(2)
c (t) + ~ω(2)(t)× (x− x

(2)
c (t)), (x, t) ∈ V

(2)
T hold true. Observe that gradient of velocity

∇x~u =




0 ω
(i)
3 −ω

(i)
2

−ω
(i)
3 0 ω

(i)
1

ω
(i)
2 −ω

(i)
1 0


 , (x, t) ∈ V

(i)
T , i = 1, 2

does not depend x in the case x ∈ V . Since V (1)(t) and V (2)(t) have a common point (y(t), t) these represen-
tations yield that

~ω(1)(t) = ~ω(2)(t), t ∈ [0, T ].

Thus, two bodies that are in touch with each other have zero relative speed, i. e. they move like an entire solid.
As well, from the above investigations we see that, if at some moment of time body does not touch other bodies
and the boundary ∂Ω, then it touches nothing during the whole interval of time [0, T ]. If body touches ∂Ω at
some moment then it is immovable during the whole interval [0, T ].
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