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THE TARTAR EQUATION FOR HOMOGENIZATION OF A MODEL
OF THE DYNAMICS OF FINE-DISPERSION MIXTURES

S. A. Sazhenkov UDC 517.946

Introduction

We consider a mathematical model describing a nonstationary Stokes flow of a fine-dispersion mixture
of viscous incompressible fluids with rapidly oscillating initial data in a bounded domain Ω ⊂ R2 during
some time interval [0, T ] (T = const < ∞). We assume that the values of the viscosity νε(~x, t, λ) are
translated along the trajectories of particles with velocity ~vε(~x, t, λ), where ε and λ are arbitrary positive
small parameters characterizing respectively the oscillation frequencies of viscosity distributions and the
velocities and amplitudes of deviations of these distributions from a constant viscosity value a0 > 0 and
a sufficiently smooth velocity field ~v(0)(~x, t) determining some “steady unperturbed” flow of an “average”
homogeneous viscous fluid. The existence of solutions to this model (Problem A in Subsection 1.1) for
given values of ε and λ is guaranteed by the familiar facts from the theory of the Stokes and Navier–Stokes
equations [1, 2].

We perform homogenization of this model, i.e., passage to the limit in the equations and boundary
conditions as ε → 0. Then the problem arises of finding effective characteristics of the homogeneous
medium. This problem necessitates passage to the limit in the product νε(∇x~vε + (∇x~vε)T) merely as νε

and ∇x~vε converge weakly∗ in L∞(Ω×[0, T ]) and weakly in L2(Ω×[0, T ]) respectively. The contemporary
state of the homogenization theory makes it possible to overcome such difficulties only in the case when the
medium has a certain ordered microstructure: periodic, quasi-periodic, random homogeneous, etc. [3–6].
The mixture, described by solutions to Problem A, has no such structure.

In this article we propose and implement the method of approximate determination of the effective
characteristics of fine-dispersion homogeneous mixtures having no ordered structure. The method bases
on the employment of the notion ofH-measure proposed by L. Tartar [7]: alongside the original Problem A
we consider some approximate problem (Problem C in Subsection 1.5) whose solutions γε and ~uε are
close to the solutions νε and ~vε of Problem A. By means of the H-measure corresponding to the sequence
{γε}ε>0, we determine the structure of the weak limit w- limε→0 γε(∇x~uε +(∇x~uε)T) approximately with
enhanced accuracy. In consequence we construct a system of approximate homogeneous equations in
which the H-measure is unknown and should be determined. Finally, we close the so-obtained system by
supplementing it with the macroscopic (not involving ε) Tartar evolution equation (see Subsection 1.3
and formula (1.28)) whose unique solution is the H-measure. As a result, we construct a correct closed
model (Model B in Subsection 1.4) whose solutions approximate the weak limits of solutions of Problem B
with high accuracy and therefore describe the motion of a homogeneous mixture rather accurately.

§ 1. Statements of Problems and the Main Results

1.1. Nonstationary Stokes flow of a fine-dispersion mixture with rapidly oscillating
initial data. We consider the following

Problem A. In the space-time cylinder QT = {(~x, t) ∈ Ω × [0, T ]} (Ω is a bounded domain in R2

with smooth boundary ∂Ω and T = const > 0), find the velocity field ~v(~x, t) = {v1(~x, t), v2(~x, t)}, the
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viscosity ν = ν(~x, t), and the pressure p = p(~x, t) satisfying the equations

∂t~v − divx(2νD(~v)) +∇xp = ~f, divx~v = 0, (1.1)
∂tν + ~v · ∇xν = 0 (1.2)

and the initial and boundary conditions

~v|∂Ω = 0, ~v(~x, 0) = ~v0ε(~x, λ), ν(~x, 0) = ν0ε(~x, λ). (1.3)
The density of the fluid is assumed to be constant (equal to unity) in the whole domain Ω; the initial

velocity distribution ~v0ε(~x, λ), the initial viscosity distribution ν0ε(~x, λ), and the vector ~f of mass forces
are given functions satisfying the conditions

~f ∈ L2(0, T ;J2α
0 (Ω)), where α ∈ (0, 1/2) is a constant, (1.4)

~v0ε(~x, λ) = ~v
(0)
0 (~x) + λ~v

(1)
0ε (~x) + λ2~v

(2)
0ε (~x), (1.5)

ν0ε(~x, λ) = a0 + λb0ε(~x) + λ2c0ε(~x); (1.6)(∥∥~v(0)
0

∥∥
J1+α
0 (Ω)

,
∥∥~v(1)

0ε

∥∥
J(Ω)

,
∥∥~v(2)

0ε

∥∥
J(Ω)

)
≤ C0, (1.7)

−c− ≤ b0ε(~x), c0ε(~x) ≤ c+ a.e. in Ω, ε > 0, (1.8)

the positive constants a0, C0, c−, and c+ are independent of ε; moreover, a0 − 2c− > 0. The following
limit relations hold as ε→ 0:

~v
(1)
0ε → ~v

(1)
0 , ~v

(2)
0ε → ~v

(2)
0 strongly in J(Ω), (1.9)

b0ε → b0 ≡ const, c0ε → c0 weakly∗ in L∞(Ω). (1.10)

The small positive parameters ε and λ characterize respectively the rapid oscillations of initial
data and the small amplitude of deviations of these oscillations from the smooth “unperturbed” state{
~v

(0)
0 (~x), ν(0)

0 (~x) ≡ a0

}
.

A solution to Problem A is understood in the sense of the following

Definition 1.1. A weak solution to Problem A is a pair ~vε(~x, t, λ), νε(~x, t, λ) of functions such that
νε ∈ L∞(QT ), ~vε ∈ L2(0, T ;J1

0 (Ω)), ∂t~vε ∈ L2(0, T ;J−1(Ω)), and the following equalities are valid:

∂t~vε − divx(2νεD(~vε)) = ~f, (1.11)
∂tνε + ~vε · ∇xνε = 0, (1.12)

~vε|t=0 = ~v0ε, νε|t=0 = ν0ε. (1.13)

In (1.1)–(1.13) and throughout the article we use the notations

∂t =
∂

∂t
, ∂i =

∂

∂xi
, ∇xν = {∂1ν, ∂2ν},

divx~v = ∂1v1 + ∂2v2, Dij(~v) = (∂ivj + ∂jvi)/2, divA =
∥∥∥∥ 2∑

i=1

∂iAij

∥∥∥∥
j=1,2

,

where A is a (2 × 2)-matrix and Dij(~v) are the components of the stress velocity tensor. The Banach
spaces J(Ω) and Jk

0 (Ω) (k ∈ R+) are the closures of the set of infinitely smooth solenoidal functions
compactly-supported in Ω in the norms of the Lebesgue space L2(Ω) and the Sobolev space W k

2 (Ω). We
denote by J−1(Ω) the dual space of J1

0 (Ω). In Definition 1.1 and throughout the article all differential
equations are understood in the distributional sense. Recall that if ~v belongs to L2(0, T ;J1

0 (Ω)) and
∂t~v belongs to L2(0, T ;J−1(Ω)) then we may consider that ~v ∈ C([0, T ];J(Ω)) [2, Chapter III, § 1,
Lemma 1.2]. It follows from here and (1.2) that if ν(~x, t) is a component of a weak solution to Problem A
then ν ∈ C([0, T ], Lq(Ω)), where the exponent q < +∞ is arbitrary [8, Chapter II, Corollary II.2]. Hence,
the traces of ~v and ν on the surface {~x ∈ Ω, t = 0} are well defined and the equalities in (1.13) make
sense.

The following proposition is validated by the familiar methods of the theory of Navier–Stokes equa-
tions [2, Chapter III, § 2.3; 1, Chapter III, § 2]:
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Proposition 1.2. There is a weak solution to Problem A. Moreover, the following estimates hold:

sup
t∈[0,T ]

‖~vε(t)‖J(Ω) + ‖~vε‖L2(0,T ;J1
0 (Ω)) + ‖∂t~vε‖L2(0,T ;J−1(Ω)) ≤ C1, (1.14)

a0 − 2c− ≤ νε(~x, t, λ) ≤ a0 + 2c+ a.e. in QT , (1.15)

where C1 is a constant independent of ε and λ.

1.2. The limit average physical characteristics of motion of a homogeneous fluid. By
(1.14) and (1.15) and the compactness theorem [2, Chapter III, § 2.2], for every λ < 1 we can choose
a subsequence of {~vε(~x, t, λ), νε(~x, t, λ)}ε>0 which converges as ε → 0 and possesses the following prop-
erties:

~vε → ~v∗ weakly in L2(0, T ;J1
0 (Ω)), strongly in L2(0, T ;J(Ω)), (1.16)

∂t~vε → ∂t~v∗ weakly in L2(0, T ;J−1(Ω)), (1.17)

νε → ν∗ weakly∗ in L∞(QT ). (1.18)

The vector field ~v∗ = ~v∗(~x, t, λ) and the function ν∗ = ν∗(~x, t, λ) describe the limit conditions of motion
of the fluid as the frequency of oscillations of initial data tends to infinity. In this sense ~v∗(~x, t, λ) and
ν∗(~x, t, λ) are the average physical characteristics of motion of the homogeneous mixture whose initial
state is determined by the distributions

~v∗|t=0 = ~v
(0)
0 + λ~v

(1)
0 + λ2~v

(2)
0 , ν∗|t=0 = a0 + λb0 + λ2c0. (1.19)

We will see below that ~v∗(~x, t, λ) and ν∗(~x, t, λ) satisfy relations of the form

∂t~v∗ − divx(M∗ : ∇x~v∗) = ~f, ∂tν∗ + ~v∗ · ∇xν∗ = 0, (1.20)

where

(M∗ : ∇x~v∗)ik =
2∑

j,l=1

M ijkl
∗ ∂jvl, i, k = 1, 2.

The coefficients Mijkl
∗ = Mijkl

∗ (~x, t, λ) are called in mechanics the components of the effective viscosity
tensor M∗. As was mentioned in the introduction, the explicit form of M∗ is unknown and hence
equation (1.20) and initial conditions (1.19) do not constitute a closed model for describing the dynamics
of a homogeneous mixture.

The main result of this article is the construction of a well-posed closed model whose solution ap-
proximates the weak limits

~v∗(~x, t, λ) = w- lim
ε→0

~vε(~x, t, λ), ν∗(~x, t, λ) = w- lim
ε→0

νε(~x, t, λ)

with high-order accuracy. The construction of the sought model bases on an original idea by Tartar who
proposed the notion of H-measure, a nonnegative Borel measure which encodes the information about
the limit conditions as ε tends to zero.

1.3. Definition of the Tartar H-measure. The Tartar equation. Consider some sequence ρε

that vanishes weakly∗ in L∞(QT ). Dropping down to a subsequence if necessary, for a.e. t ∈ [0, T ] we
define the mapping µt from the set of functions {aϕ1ϕ2 | a ∈ C(S1), ϕ1, ϕ2 ∈ C0(Ω)} into R as follows:

〈µt, aϕ1ϕ2〉 = lim
ε→0

∫
Ω

ϕ1ρεA [ϕ2ρε] d~x, (1.21)
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where A : L2(R2) → L2(R2) is a pseudodifferential operator of zero order with a symbol a ∈ C(S1);
S1 is the unit circle in R2. Recall that in terms of the Fourier transform

F [u](~ξ) =
∫
R2

exp(2πi~x ·~ξ)u(~x) d~x,

the operator A is defined as F [A [u]](~ξ) = a(~ξ/|~ξ|)F [u](~ξ) and, by Parseval’s identity, (1.21) has the
form

〈µt, aϕ1ϕ2〉 = lim
ε→0

∫
R2

F [ϕ1ρε](~ξ)a(~ξ/|~ξ|)F [ϕ2ρε](~ξ) d~ξ. (1.22)

Here and in the sequel, the functions defined only for ~x ∈ Ω and standing in the integrals over the whole
space R2 are supposed to vanish on R2 \ Ω.

Since the linear span of the set of functions {ϕ1ϕ2a} is dense in C0(Ω×S1), by [7, § 1], (1.21) defines
a nonnegative Borel measure on Ω× S1 for a.e. t ∈ [0, T ] which is called the H-measure associated with
the subsequence ρε → 0.

Remark 1.3. The notion of H-measure was proposed also in [9] but under the name “microlocal
defect measure” (MDM).

It was established in [10] that the H-measure µt is a natural extension of some mapping νt ∈
L2,w(Ω,M(S1)) to the space of Borel measures on Ω×S1 in the sense that the following equality is valid
for every function ϕ ∈ L2(Ω, C(S1)) and almost every t ∈ [0, T ]:

〈µt, ϕ〉 =
∫
Ω

d~x

∫
S1

ϕ(~x, y)dνt,x(y),

which can be expressed as dµt(~x, y) = d~xdνt,x(y). The mapping ν, regarded as a distribution in t, ~x,
and y, belongs to L∞(0, T ;L2,w(Ω,M+(S1))).

Here M+(S1) is the set of nonnegative measures in the dual space M(S1) of C(S1). The norm in
M(S1) is defined for every τ ∈M(S1) by

‖τ‖M(S1) = sup
‖f‖C(S1)≤1

∫
S1

f(y) dτ(y)

[11, Chapter III, § 1.6]. L2,w(Ω,M+(S1)) stands for the set of weakly Lebesgue measurable mappings
~x → τx from Ω into M+(S1). The norm in L2,w(Ω,M(S1)) is defined as follows [12, Chapter III,
Definition 2.7]:

‖τ‖2
L2,w(Ω,M(S1)) =

∫
Ω

‖τx‖2
M(S1) d~x.

Suppose that the sequence {ρε}ε>0 under consideration is a solution to the Cauchy problem for the
transport equation of the form

∂tρε + ~w · ∇xρε = 0, ρε|t=0 = ρ0ε, (1.23)

where ~w = {w1, w2} is a given solenoidal vector field (i.e., divx ~w = 0) of the class C1(QT ) which is
compactly-supported in Ω and {ρ0ε}ε>0 is a sequence of Cauchy data which converges weakly∗ to zero
in L∞(Ω) as ε → 0. By analogy to [7, Theorem 3.4], we establish that the family {µt} of H-measures
associated with the sequence {ρε(~x, t)} and depending on t as a parameter is a solution to the equation

T∫
0

〈µt, ∂tΦ + {w1ξ1 + w2ξ2,Φ}〉 dt+ 〈µt|t=0,Φ|t=0〉 = 0, (1.24)
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where (t,~x,~ξ) ∈ [0, T ]×Ω×R2, Φ = Φ(t,~x,~ξ/|~ξ|) is an arbitrary test function in the class C1([0, T ]×Ω×S1)
which satisfies the condition Φ|t=T = 0, and {ϑ, β} = ∇ξϑ · ∇xβ − ∇xϑ · ∇ξβ is the Poisson bracket.
Note that the differentiation of the test function Φ with respect to ξi, i = 1, 2, in (1.24) does not lead to
misunderstanding, since the Poisson bracket in (1.24) has zero order in ~ξ and is a function of the class
C1[0, T ]× C(Ω× S1), i.e., it belongs to the domain of µt.

Parametrizing the unit circle S1 by the angular coordinate y, S1 = {y(mod 2π)}, and changing
the variables ξ1 and ξ2 by ξ1 = r cos y and ξ2 = r sin y, with r the radial coordinate on the plane, we
take (1.24) to the form

T∫
0

〈µt, ∂tΦ + divx(Φ~w) + (Y : ∇x~w)∂yΦ〉 dt+ 〈µt|t=0,Φ|t=0〉 = 0, (1.25)

where

Y =
(
−1

2 sin 2y cos2 y
− sin2 y 1

2 sin 2y

)
and Φ = Φ(t,~x, y) is a test function such that Φ ∈ C1([0, T ]× Ω× S1) and Φ|t=T = 0.

In the distributional sense, equation (1.25) is equivalent to the first-order linear partial differential
equation

∂tµt + ~w · ∇xµt + ∂y(µtY : ∇x~w) = 0, (t,~x, y) ∈ (0, T )× Ω× S1. (1.26)

Definition 1.4. Equation (1.26) is called the Tartar equation.
The Tartar equation for an H-measure was rigorously derived in [10] under weaker assumptions

on the smoothness of ~w, namely, under ~w ∈ L2(0, T ;J2
0 (Ω)). In [13] (the results were also announced

in [14]) the author proved well-posedness of the Cauchy problem for the Tartar equation in the class of
nonnegative Borel measures.

Proposition 1.5. Suppose that ~w ∈ L2(0, T ;J1
0 (Ω)). Then, for every measure µ0 such that

dµ0(~x, y) = d~xdν0,x(y), ν0 ∈ L2,w(Ω,M+(S1)), the Cauchy problem for (1.26) with the Cauchy data
µt|t=0 = µ0 has a unique solution; moreover, dµt(~x, y) = d~xdνt,x(y), where ν∈L∞(0, T ;L2,w(Ω,M+(S1))).

1.4. Description of a closed homogeneous model.
Model B. Find successively the following:
(B1) a vector field ~v(0) = ~v(0)(~x, t) solving the problem of “unperturbed” flow of an “averaged”

homogeneous fluid

∂t~v
(0) − a0∆x~v

(0) = ~f, ~v(0) ∈ L2(0, T ;J2+α
0 (Ω)), ~v(0)|t=0 = ~v

(0)
0 ; (1.27)

(B2) a measure µt such that

dµt(~x, y) = d~xdνt,x(y), ν ∈ L∞(0, T ;L2,w(Ω,M+(S1))),

solving the Cauchy problem for the Tartar equation

∂tµt + ~v(0) · ∇xµt + ∂y(µtY : ∇x~v
(0)) = 0, µt|t=0 = µ0, (1.28)

with µ0 the H-measure associated with the sequence b0ε − b0;
(B3) a function γ = γ(~x, t, λ), γ ∈ L∞(QT ) ∩ C([0, T ];Lq(Ω)), q ∈ [1,+∞), solving the Cauchy

problem for the transport equation:

∂tγ + ~v(0) · ∇xγ = 0, γ|t=0 = a0 + λb0 + λ2c0; (1.29)

(B4) a vector field ~u = ~u(~x, t, λ) solving the problem

∂t~u− divx(ΛD(~u) + D(~u)Λ) = ~f, ~u ∈ L2(0, T ;J1
0 (Ω)), (1.30)
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~u|t=0 = ~v
(0)
0 + λ~v

(1)
0 + λ2~v

(2)
0 , (1.31)

with

Λij = δijγ − λ2a−1
0

∫
S1

Y1ij dνt,x(y), Y1 =
(

cos2 y 1
2 sin 2y

1
2 sin 2y sin2 y

)
and δij the Kronecker symbol.

A solution of Model B is the triple {µt, γ,~u}. In the definition of the (2 × 2)-matrix Λ we use the
representation dµt(~x, y) = d~xdνt,x(y) for the H-measure µt. Accordingly, equation (1.30) is understood
in the sense of the integral equality∫

QT

~u · ∂t~ϕ d~xdt+
∫
Ω

~u(~x, 0) ·~ϕ(~x, 0) d~x−
∫

QT

γD(~u) : D(~ϕ) d~xdt

+
λ2

a0

T∫
0

( ∫
Ω×S1

(Y1D(~u) + D(~u)Y1) : D(~ϕ) dµt(~x, y)
)
dt+

∫
QT

~f ·~ϕ d~xdt = 0, (1.32)

where ~ϕ = ~ϕ(~x, t) is a sufficiently smooth test function such that ~ϕ|t=T = 0.

1.5. Description for an approximate model. In § 2 Model B will be constructed by homoge-
nization in ε of the following model.

Problem C. Find successively the following:
(C1) a function γε = γε(~x, t, λ), γε ∈ L∞(QT ) ∩ C([0, T ];Lq(Ω)), q ∈ [1,+∞), solving the Cauchy

problem for the transport equation

∂tγε + ~v(0) · ∇xγε = 0, γε|t=0 = a0 + λb0ε + λ2c0ε, (1.33)

where ~v(0) is a solution to (B1);
(C2) a vector field ~uε = ~uε(~x, t, λ) solving the problem

∂t~uε − divx(2γεD(~uε)) = ~f, ~uε ∈ L2(0, T ;J1
0 (Ω)), (1.34)

~uε|t=0 = ~v
(0)
0 + λ~v

(1)
0ε + λ2~v

(2)
0ε . (1.35)

The pair {γε,~uε} is a solution to Problem C.

1.6. Well-posedness and the approximation properties. Below we describe the construction
of Model B and establish the following theorems:

Theorem 1.6. Model B has a unique solution for all values of λ less than some λ∗∗ ∈ (0, 1).
The exact value λ∗∗ will be established in the proof.

Theorem 1.7. Let {~v∗, ν∗} be the weak limit of solutions to Problem A and let ~u and γ, together
with µt, constitute a solution of Model B. Then as λ→ 0

‖~v∗ −~u‖L2(0,T ;J1
0 (Ω)) + ‖∂t~v∗ − ∂t~u‖L2(0,T ;J−1(Ω)) = O(λ2), (1.36)

‖ν∗ − γ‖C([0,T ];Lq(Ω)) = o(λ2), q ∈ [1,+∞). (1.37)

Theorem 1.8. Let {~u∗, γ∗} be the weak limit of solutions to Problem C and let ~u and γ, together
with µt, constitute a solution of Model B. Then

γ∗(~x, t) = γ(~x, t) a.e. in QT , (1.38)

‖~u∗ −~u‖L2(0,T ;J1
0 (Ω)) + ‖∂t~u∗ − ∂t~u‖L2(0,T ;J−1(Ω)) = O(λ3) as λ→ 0. (1.39)
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§ 2. Construction of Model B

2.1. Well-posedness of Problem C.

Proposition 2.1. Problem C has a unique solution for arbitrary given ε, λ > 0. This solution
satisfies (1.14) and (1.15) with ~uε and γε substituted for ~vε and νε.

Proof. Subproblem (B1) is uniquely solvable [15, Chapter IV, § 2]. Subproblem (C1) in whose
statement ~v(0), a solution to subproblem (B1), is considered as a given function is also uniquely solvable
[8, Corollary II.1]. Finally, considering a solution γε to subproblem (C1) as a function given in the
statement of subproblem (C2), we establish unique solvability of subproblem (C2) by arguments similar
to [2, Chapter III, § 1.2–§ 1.4]. Estimates for solutions to Problem C are established by analogy with
Problem A.

Remark 2.2. The above proof of solvability of subproblem (C1) also justifies solvability of subprob-
lem (B3). In view of Propositions 1.5 and 2.1, we have thus partially established Theorem 1.6, namely,
solvability of subproblems (B1)–(B3).

2.2. Averaging of Problem C. By estimates (1.14) and (1.15) and the compactness theorem of
[2, Chapter III, § 2.2], from a sequence of solutions to Problem C we can extract a subsequence that
converges weakly as ε→ 0 to some limit {γ∗,~u∗} and is such that

~uε → ~u∗ weakly in L2

(
0, T ;J1

0 (Ω)
)
, strongly in L2(0, T ;J(Ω)), (2.1)

∂t~uε → ∂t~u∗ weakly in L2(0, T ;J−1(Ω)), (2.2)

γε → γ∗ weakly∗ in L∞(QT ). (2.3)

According to the theory of G-convergence of parabolic differential operators (see [16] wherein the results
of [17, Theorems 13–16] concerning scalar-valued operators are extended to vector-valued operators), we
also have the limit relation

2γεD(~uε) → X∗ : ∇x~u∗ weakly in L2(QT ), (2.4)

with X∗ ∈ L∞(QT ) the effective viscosity tensor satisfying the estimates∣∣Xijkl
∗ (~x, t, λ)

∣∣ ≤ C2 a.e. in QT , (2.5)

∫
Ω

2∑
i,j,k,l=1

Xijkl
∗ (~x, t, λ)∂jϕl(~x)∂iϕk(~x) d~x ≥ C2

k(Ω)(a0 − λc− − λ2c−)‖~ϕ‖2
J1
0 (Ω) (2.6)

for a.e. t ∈ [0, T ] and every ~ϕ ∈ J1
0 (Ω), where C2 is a constant depending only on the geometry of the

domain Ω and the constants a0, c−, and c+, and Ck(Ω) is the constant in Korn’s inequality ‖~ϕ‖J1
0 (Ω) ≤

Ck(Ω)‖D(~ϕ)‖2,Ω, ~ϕ ∈ J1
0 (Ω) [18, Chapter III, § 3.2] (here and in the sequel ‖D(~ϕ)‖2

2,Ω =
∫
Ω |D(~ϕ)|2d~x,

|D(~ϕ)|2 = D(~ϕ) : D(~ϕ)). We have thus established the following

Proposition 2.3. The weak limits {γ∗,~u∗} of a sequence of solutions to Problem C and the effective
viscosity tensor X∗ satisfy the equalities

∂t~u∗ − divx(X∗ : ∇x~u∗) = ~f, ~u∗|t=0 = ~v
(0)
0 + λ~v

(1)
0 + λ2~v

(2)
0 ; (2.7)

∂tγ∗ + ~v(0) · ∇xγ∗ = 0, γ∗|t=0 = a0 + λb0 + λ2c0. (2.8)

Remark 2.4. Equality (1.20) is established similarly.
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2.3. A lemma on asymptotic expansions.

Lemma 2.5. For all λ less than λ∗
def= (1 + 32a−1

0 [max{c−, c+}]2)−1/2, the following hold:
(a) The solutions to Problem C and the weak limits {γ∗,~u∗} of a sequence of solutions to Problem C

admit the representations

γε(~x, t, λ) = a0 + λγ(1)
ε (~x, t) + λ2γ(2)

ε (~x, t), (2.9)

~uε(~x, t, λ) = ~v(0)(~x, t) + λ~u(1)
ε (~x, t) + λ2~u(2)

ε (~x, t) +
∑
r≥3

λr~u(r)
ε (~x, t), (2.10)

γ∗(~x, t, λ) = a0 + λb0 + λ2γ
(2)
∗ (~x, t), (2.11)

~u∗(~x, t, λ) = ~v(0)(~x, t) + λ~u
(1)
∗ (~x, t) + λ2~u

(2)
∗ (~x, t) +

∑
r≥3

λr~u
(r)
∗ (~x, t), (2.12)

with
γ

(2)
∗ = w- lim

ε→0
γ(2)

ε , ~u
(r)
∗ = w- lim

ε→0
~u(r)

ε , r ≥ 1, (2.13)

−c− ≤ γ(1)
ε (~x, t), γ(2)

ε (~x, t) ≤ c+ for a.e. (~x, t) ∈ QT , (2.14)

‖~u(r)
ε ‖L2(0,T ;J1

0 (Ω)) ≤ C3λ
2−r
∗ , r ≥ 1; (2.15)

moreover, γ
(1)
ε , γ

(2)
ε , γ

(2)
∗ , and ~u

(r)
ε are determined uniquely and the constant C3 depends only on C0, a0,

c−, c+, and norm of the right-hand side of (1.34) in L2(0, T ;J−1(Ω));
(b) The effective viscosity tensor X∗ admits the analytic representation

X∗(~x, t, λ) = X(0)
∗ + λX(1)

∗ + λ2X(2)
∗ (~x, t) +

∑
r≥3

λrX(r)
∗ (~x, t); (2.16)

moreover, the following relations are valid for every function ~ϕ ∈ L2(0, T ;J1
0 (Ω)):

X(0)
∗ : ∇x~ϕ = 2a0D(~ϕ), X(1)

∗ : ∇x~ϕ = 2b0D(~ϕ), ‖X(2)
∗ : ∇x~ϕ‖2,QT

≤ C4‖∇x~ϕ‖2,QT
, (2.17)

where C4 is a constant independent of λ and the choice of ~ϕ.

Remark 2.6. The identity in (2.17) is equivalent to the following:

X(0)ijkl
∗ = (δilδjk + δijδlk)a0, X(1)ijkl

∗ = (δilδjk + δijδlk)b0, i, j, k, l = 1, 2.

Proof of Lemma 2.5. Equalities (2.9) and (2.11), estimate (2.14), and the first limit relation
in (2.13) are established by simple arguments using the linearity of the transport equation (1.33), the
existence and uniqueness theorem for it, and the a priori estimates for its solutions [8; 1, Chapter III,
§ 1]. To justify the other assertions of Lemma 2.5, consider the following auxiliary problem:

Problem D. Find a vector-function ~wε = ~wε(~x, t, λ) satisfying

∂t~wε − divx

(
2
(
a0 + λγ(1)

ε + λ2γ(2)
ε

)
D(~wε)

)
= ~g, ~wε ∈ L2

(
0, T ;J1

0 (Ω)
)
, (2.18)

~wε|t=0 = ~v
(0)
0 + λ~v

(1)
0ε + λ2~v

(2)
0ε , (2.19)

where ~g ∈ L2(0, T ;J−1(Ω)) is given and a0 + λγ
(1)
ε + λ2γ

(2)
ε is a solution to subproblem (C1).

The formal asymptotic solution (see [4, Chapter II]) to Problem D

~wf.a.s.
ε (~x, t, λ) = ~w(0)(~x, t) + λ~w(1)

ε (~x, t) + λ2~w(2)
ε (~x, t) +

∑
r≥3

λr~w(r)
ε (~x, t), (2.20)
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constructed by successively solving the problems

∂t~w
(0) − a0∆x~w

(0) = ~g, ~w(0) ∈ L2

(
0, T ;J1

0 (Ω)
)
, (2.21)

~w(0)|t=0 = ~v
(0)
0 , (2.22)

∂t~w
(1)
ε − a0∆x~w

(1)
ε = divx

(
2γ(1)

ε D(~w(0))
)
, ~w(1)

ε ∈ L2

(
0, T ;J1

0 (Ω)
)
, (2.23)

~w(1)
ε |t=0 = ~v

(1)
0ε , (2.24)

∂t~w
(2)
ε − a0∆x~w

(2)
ε = divx

(
2γ(2)

ε D(~w(0)) + 2γ(1)
ε D

(
~w(1)

ε

))
, ~w(2)

ε ∈ L2

(
0, T ;J1

0 (Ω)
)
, (2.25)

~w(2)
ε |t=0 = ~v

(2)
0ε , (2.26)

∂t~w
(r)
ε − a0∆x~w

(r)
ε = divx

(
2γ(2)

ε D
(
~w(r−2)

ε

)
+ 2γ(1)

ε D
(
~w(r−1)

ε

))
, ~w(r)

ε ∈ L2

(
0, T ;J1

0 (Ω)
)
, (2.27)

~w(r)
ε |t=0 = 0, r ≥ 3, (2.28)

is an exact solution. Indeed, the functions ~w(r)
ε , r ≥ 1, satisfy an inequality like (2.1) which is estab-

lished by successively estimating
∥∥D

(
~w

(1)
ε

)∥∥2

2,QT
by

∥∥D(~w(0))
∥∥2

2,QT
,
∥∥D

(
~w

(2)
ε

)∥∥2

2,QT
by

∥∥D
(
~w

(1)
ε

)∥∥2

2,QT
, . . . ,∥∥D

(
~w

(r)
ε

)∥∥2

2,QT
by

∥∥D
(
~w

(r−1)
ε

)∥∥2

2,QT
on using the familiar technics of construction of a priori estimates

for solutions to the Navier–Stokes equations [2, Chapter III, § 1.3] and Korn’s inequality. It follows
from (2.15) and Minkowki’s inequality that series (2.20) converges in L2

(
0, T ;J1

0 (Ω)
)
. Proposition 2.1

implies in turn that the above-constructed solution to Problem D is unique.
Subproblem (C2) is a particular case of Problem D; therefore, from (2.20) we immediately derive

representation (2.10) and estimate (2.15). Passing to the limit in (2.10) as ε→ 0, we establish (2.12) and
the second limit relation in (2.13). Thus, item (a) of Lemma 2.5 is proven.

We turn to the proof of item (b). It bases on the fact that, according to the theory of G-convergence
[16, 17], the tensor X∗ is uniquely determined by the family {γε}ε>0 and the initial data ~wε|t=0 and is
independent of the choice of the right-hand side ~g of (2.18). Extract a subsequence from {γε}ε>0 (if
necessary) and pass to the limit in Problem D as ε → 0. According to the theory of G-convergence, we
have

2γεD(~wε) → X∗ : ∇x~w∗ weakly in L2(QT ), ~wε → ~w∗ weakly in L2(0, T ;J1
0 (Ω)). (2.29)

By item (a), the function ~w∗ and the convolution X∗ : ∇x~w∗ are analytic in λ for a.e. (~x, t) ∈ QT .
Therefore, by the arbitrariness of ~g we establish as in [19] analyticity of the tensor X∗(~x, t, λ), i.e.,
validity of a representation like X∗(~x, t, λ) =

∑∞
r=0 λ

rX(r)
∗ (~x, t).

To complete the proof of the lemma, consider Problem D with the data

~g = ∂t~ϕ− a0∆x~ϕ, (2.30)

where ~ϕ is an arbitrary function such that

~ϕ ∈ L2

(
0, T ;J1

0 (Ω)
)
, ∂t~ϕ ∈ L2(0, T ;J−1(Ω)), ~ϕ|t=0 = ~v

(0)
0 .

Note that in this case ~w(0) = ~ϕ by (2.21) and (2.22). By (2.29) and asymptotic expansions like (2.10)
and (2.12), we have X(0)

∗ : ∇x~ϕ = 2a0D(~ϕ) and X(0)
∗ : ∇x~w

(1)
∗ + X(1)

∗ : ∇x~ϕ = 2a0D(~w(1)
∗ ) + 2b0D(~ϕ). By

the arbitrariness of ~ϕ, the above equalities imply validity of the equalities in (2.17). Hence, we derive

X(2)
∗ : ∇x~ϕ = 2c0D(~ϕ) + 2w- lim

ε→0
γεD

(
~w(1)

ε

)
− 2b0D

(
~w

(1)
∗

)
. (2.31)

From here and the energy estimate

sup
ε

∥∥D
(
~w(1)

ε

)∥∥2

2,QT
≤ 16a−1

0 [max{c−, c+}]2‖D(~ϕ)‖2
2,QT
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for a solution to problem (2.23), (2.24) (which is obtained by the above-mentioned technics of construction
of estimates for solutions to Navier–Stokes equations [2, Chapter III, § 1.3]) we obtain the inequality
in (2.17) with C4

def= 2 max{c−, c+}+ 16a−1/2
0 (max{c−, c+}).

2.4. The explicit form of X(2)
∗ (~x, t). The problem of determining the explicit form of the effective

viscosity tensor X∗(~x, t, λ) is beyond the scope of the methods of the theory of G-convergence which
were used in Subsections 2.1 and 2.2. In this subsection we use Tartar’s idea [7, § 4.2] of determining
the effective coefficients of averaged equations by means of H-measures and establish the explicit form
of X(2)

∗ in terms of the H-measure associated with the sequence {γ(1)
ε − b0}ε>0.

Proposition 2.7. The following integral identity holds:∫
QT

(X(2)
∗ : ∇x~ϕ) : Φ d~xdt =

∫
QT

γ
(2)
∗ D(~ϕ) : Φ d~xdt

− 1
a0

T∫
0

( ∫
Ω×S1

(Y1D(~ϕ) + D(~ϕ)Y1) : Φ dµt(~x, y)
)
dt, (2.32)

where Φ = Φ(~x, t) is a (2×2)-matrix whose entries are smooth test functions, ~ϕ = ~ϕ(~x, t) is a sufficiently

smooth test vector-function, and µt is the H-measure associated with {γ(1)
ε − b0}.

Remark 2.8. Equality (2.32) and the representation dµt(~x, y) = d~xdνt,x(y) for the H-measure µt

imply that the components of the tensor X(2)
∗ have the following form a.e. in QT :

X(2)ijkl
∗ (~x, t) = (δilδjk + δijδlk)γ

(2)
∗ (~x, t)

−(2a0)−1

∫
S1

[δilY1jk(y) + δklY1ij(y) + δijY1kl(y) + δjkY1il(y)]dνt,x(y).

Proof of Proposition 2.7. Consider Problem D with data of the form (2.30). As in the proof
of Lemma 2.5, we denote a solution to this problem by ~wε. By item (a) of Lemma 2.5, it has the form
~wε = ~ϕ + λ~w

(1)
ε + λ2~w

(2)
ε + . . . . We express the structure of the weak limit w-limε→0 γ

(1)
ε D(~w(1)

ε ) in
terms of the H-measure µt associated with the sequence {γ(1)

ε − b0}. To this end, we apply the Fourier
transform in the space variables to both sides of (2.23) and write down the integral equality equivalent
in the distributional sense to the resultant relation:

T∫
0

dt

∫
R2

F
[
~w(1)

ε

]
(~ξ, t) · ∂t

~Ψ(~ξ, t) d~ξ −
∫
R2

F
[
~v

(1)
0ε

]
(~ξ) · ~Ψ(~ξ, 0) d~ξ

+

T∫
0

dt

∫
R2

2∑
j,k=1

2πiξjF
[
2a0Djk

(
~w(1)

ε

)
+ 2γ(1)

ε Djk(~ϕ)
]
(~ξ, t)Ψk(~ξ, t) d~ξ = 0, (2.33)

where ~Ψ: R2 × [0, T ] → R2 is a sufficiently smooth vector-function and ~Ψ(~ξ, T ) = 0.
Suppose that ~ψ ∈ C1(Ω× (0, T )), ~ψ|t=T = 0, and a ∈ C1(S1). (Still formally) take the test function

in (2.33) to be ~Ψε = |~ξ|−1a(~ξ/|~ξ|)F [(γ(1)
ε − b0)~ψ](~ξ, t) and apply Parseval’s identity (also formally). By

the equality ∂t(γ
(1)
ε −b0) = −divx(~v(0)(γ(1)

ε −b0)) which is an elementary consequence of (2.9) and (1.33),
as a result we derive from (2.33) the integral identity
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0 = 2π

T∫
0

dt

∫
R2

~w(1)
ε · (I1 ◦A )

[(
γ(1)

ε − b0
)
∂t
~ψ

]
d~x

−2π

T∫
0

dt

∫
R2

2∑
j,k=1

w
(1)
εk (Rj ◦A )

[
v

(0)
j

(
γ(1)

ε − b0
)
ψk

]
d~x

+2π

T∫
0

dt

∫
R2

2∑
j,k=1

w
(1)
εk (I1 ◦A )

[
v

(0)
j

(
γ(1)

ε − b0
)
∂jψk

]
d~x−

∫
R2

~v
(1)
0ε (I1 ◦A )[(b0ε − b0)~ψ(0)] d~x

+2π

T∫
0

dt

∫
R2

2∑
j,k=1

{
2a0Djk

(
~w(1)

ε

)
+ 2

(
γ(1)

ε − b0
)
Djk(~ϕ)

}
(Rj ◦A )

[(
γ(1)

ε − b0
)
ψk

]
d~x

−2π

T∫
0

dt

∫
R2

2∑
j,k=1

2b0Djk(~ϕ)(Rj ◦A )
[(
γ(1)

ε − b0
)
ψk

]
d~x. (2.34)

Here A is the pseudodifferential operator of zero order with the symbol a, Rj , j = 1, 2, is the Riesz
operator (the pseudodifferential operator of zero order with the symbol iξj/|ξ|), and I1 is the Riesz
potential defined by F [I1[Φ]](~ξ) = (2π|~ξ|)−1F [Φ](~ξ), Φ ∈ D ′(R2) [20, Chapter V, § 1.1]. By the theory
of pseudodifferential operators of zero order and Riesz potentials [20, Chapter II, Theorem 3; Chapter V,
Theorem 1] and the above-established regularity properties of the functions in the integrands, all integrals
in (2.34) are well defined. Consequently, the choice of ~Ψε as a test function is legitimate, the application
of Parseval’s identity is justified, and the integral identity (2.34) makes sense.

Letting ε→ 0 in (2.34), from the weak∗ convergence of γ(1)
ε to b0 in L∞(QT ), the strong convergence

of ~w(1)
ε to ~w(1)

∗ in L2(0, T ;J(Ω)), and the above-mentioned properties of pseudodifferential operators we
obtain the equality

lim
ε→0

i

T∫
0

dt

∫
R2

2∑
j,k=1

Djk

(
~w(1)

ε

)
(Rj ◦A )

[(
γ(1)

ε − b0
)
ψk

]
d~x

=

T∫
0

〈
µt,

2∑
j,k=1

Djk(~ϕ)ψk
1
a0

ξj

|~ξ|
a(~ξ/|~ξ|)

〉
dt

whose right-hand side is represented in terms of the H-measure µt associated with the chosen subsequence
γ

(1)
ε − b0

w→ 0.
We put ~ψl = D·l(~ζ) in this equality (~ζ ∈ C1([0, T ];C1

0 (Ω)) is an arbitrary test vector-function) and
al(~ξ/|~ξ|) = ξl/|~ξ| (i.e., A = −iRl), l = 1, 2. After simple technical transformations we conclude that

lim
ε→0

T∫
0

dt

∫
Ω

(
γ(1)

ε − b0
)
D

(
~w(1)

ε

)
: D(ζ) d~x

= −1
2

T∫
0

〈
µt,

2∑
j,k,l=1

∂jϕl∂iζk

{
ξjξk

a0|~ξ|2
δil +

ξlξk

a0|~ξ|2
δij +

ξiξj

a0|~ξ|2
δkl +

ξiξl

a0|~ξ|2
δkj

}〉
dt

= − 1
a0

T∫
0

∫
Ω×S1

(Y1D(~ϕ) + D(~ϕ)Y1) : D(~ζ) dµt(~x, y)dt. (2.35)
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In the last equality, y is the angular coordinate on the unit circle. Recall that ξ1/|~ξ| = cos y and
ξ2/|~ξ| = sin y. Equalities (2.17), (2.31), and (3.35) imply the integral identity (2.32).

2.5. Discarding the summands in (2.16) that involve the factors X(r)
∗ , r ≥ 3, indefinite by Lemma 2.5

and Proposition 2.7, i.e., “discarding the tail” of the analytic representation for the effective viscosity
tensor X∗(~x, t, λ), we arrive at the statement of subproblem (B4) in which, by Remarks 2.6 and 2.8,
the matrix Λ corresponds to the effective viscosity tensor X̃∗ = X(0)

∗ + λX(1)
∗ + λ2X(2)

∗ ; i.e., X̃∗ : ∇x~ϕ =
ΛD(~ϕ) + D(~ϕ)Λ, ~ϕ ∈ J1

0 (Ω).

§ 3. Justification of Well-Posedness and Proof
of the Approximation Properties of Model B

3.1. Proof of Theorem 1.6. Recall that by Remark 2.2 subproblems (B1)–(B3) are uniquely
solvable. Owing to the estimate of item (b) of Lemma 2.5, for every λ < λ∗∗

def= (c2−(2C4)−2+a0C
−1
4 )−1/2−

c−(2C4)−1, the tensor X̃∗ corresponding to Λ determines for a.e. (~x, t) ∈ QT the bounded positive definite
quadratic form Φ → (X̃∗ : Φ) : Φ (Φ is the (2 × 2)-matrix with entries in R). Indeed, boundedness is
obvious and positive definiteness follows from the two inequalities (X̃∗ : Φ) : Φ ≥ (a0 − λc− − λ2C4)|Φ|2
for a.e. (~x, t) ∈ QT and a0 − λc− − λ2C4 > 0 for λ < λ∗∗. By analogy with [2, Chapter III, § 1.2–§ 1.4],
we hence conclude that subproblem (B4) has a unique solution.

3.2. Proof of Theorem 1.8. The arguments of Subsection 2.5 imply that the function γ and the
vector-function ~u constituting, together with the measure µt, a solution of Model B satisfy item (a) of
Lemma 2.5; moreover, the terms of the asymptotic expansions of γ and ~u up to the second order in λ

coincide with similar terms for the weak limits of solutions to Problem C: γ(0) = a0, γ(1) = b0, γ(2) = γ
(2)
∗ ,

~u(0) = ~v(0), ~u(1) = ~u
(1)
∗ , and ~u(2) = ~u

(2)
∗ . Thus, identity (1.38) holds together with the representation

~u−~u∗ =
∑
r≥3

λr(~u(r) −~u(r)
∗ )

which, in view of estimates like (1.38) for ~u(r) and ~u(r)
∗ , implies the asymptotic relation (1.39).

Remark 3.1. Model B yields a better approximation to the weak limits of solutions to Problem C
as compared with any other model not accounting for the information encoded in the construction of
the H-measure µt. Indeed, denote by ~u a velocity field that is a solution of the model in question
(say, “Model E”). Using the constructions of § 2 and § 3, we see that the maximally possible accuracy of
approximation to the velocity field ~u∗ = w- limε→0~uε for Model E is at most the second order in λ:

‖~u∗ − ~U‖L2(0,T ;J1
0 (Ω)) + ‖∂t~u∗ − ∂t

~U‖L2(0,T ;J−1(Ω)) = O(λ2)

6= o(λ2) as λ→ 0.

3.3. Proof of Theorem 1.7. Repeating the arguments of the proof of Lemma 2.5, we establish
the following representations for ~vε, ν∗, and ~v∗:

~vε(~x, t, λ) = ~v(0)(~x, t) + λ~v(1)
ε (~x, t, λ) + λ2~v(2)

ε (~x, t, λ) + λ3~v(3)
ε (~x, t, λ) + . . . , (3.1)

ν∗(~x, t, λ) = a0 + λb0 + λ2ν
(2)
∗ (~x, t, λ), (3.2)

~v∗(~x, t, λ) = ~v(0)(~x, t) + λ~u
(1)
∗ (~x, t, λ) + λ2~v

(2)
∗ (~x, t, λ) + λ3~v

(3)
∗ (~x, t, λ) + . . . , (3.3)

where ν(2)
∗ satisfies an estimate like (2.14); ~v(2)

∗ and ~v(3)
∗ , estimates like (2.15); and the vector field ~u(1)

∗
is defined in item (a) of Lemma 2.5. Considering the asymptotic representations (2.11), (2.12), (3.2),
and (3.3) and using the identities γ(2) = γ

(2)
∗ and ~u(1) = ~u

(1)
∗ , we obtain

γ − ν∗ = λ2(γ(2) − ν
(2)
∗ ), (3.4)
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~v∗ −~u = λ2(~v(2)
∗ −~u(2)

∗ ) +
∑
r≥3

λr(~v(r)
∗ −~u(r)

∗ ). (3.5)

Since ~v∗ −→
λ→0

~v(0) strongly in L2(0, T ;J1
0 (Ω)), the stability theorem for transport equations [8, Theo-

rem II.4] yields the following limit relation:

γ(2) − ν
(2)
∗ −→

λ→0
0 strongly in C([0, T ], Lq(Ω)), q < +∞. (3.6)

From here and (3.4) we obtain the asymptotic relation (1.37).
Finally, the asymptotic relation (1.36) ensues from (3.5) in view of estimates like (2.15) for ~v(r)

∗ and
~u

(r)
∗ (r ≥ 2).

Appendix. Equivalent Description for Model B in the Case of
a Periodic Rapidly Oscillating Initial Viscosity

Closing the article, we consider a specific case of Model B in which the oscillations of the initial
viscosity distribution in the statement of Problem A (Problem C) are periodic:

νε(~x, t, λ)|t=0 = γε(~x, t, λ)|t=0 = a0 + λB(~x/ε), (4.1)
where B ∈ C1(R2), −c− ≤ B(~θ) ≤ c+, ~θ ∈ R2, and B is periodic with period 1, i.e., B(~θ +~ei) = B(~θ),
~θ ∈ R2, i = 1, 2, ~e1 = (1, 0) and ~e2 = (0, 1).

Given an arbitrary sequence εk −→
k→∞

0, we have [6, Theorem 0.2]

γεk
|t=0 → a0 + λ〈B〉 weakly∗ in L∞(Ω), (4.2)

where 〈B〉 =
∫
(0,1)×(0,1)B(~θ) d~θ. A solution to the Cauchy problem for the transport equation (1.33) with

initial data (4.1) has the form [1, § 3, Lemma 1.1]
γε = a0 + λB(~X(~x, t)/ε), (4.3)

where ~X(~x, t) = ~V (τ,~x, t)|τ=0 and ~V (τ,~x, t) is a solution to the Cauchy problem
d~V

dτ
= ~v(0)(~V , τ), ~V |τ=t = ~x. (4.4)

In view of (4.2), γεk
−→
εk→0

a0+λ〈B〉 weakly∗ in L∞(QT ). By [9, Proposition 1.5], theH-measure associated

with the sequence {B(~X(~x, t)/εk)−〈B〉} weakly convergent to zero is calculated explicitly and looks like

µt(~x, y) =
∑

~p∈Z2\{0,0}

|Bp|2δ
(
y − cos−1

{
~p · ∂x1

~X

/( 2∑
i=1

(~p · ∂xi
~X)2

)1/2})
; (4.5)

i.e., for every function Φ(~x, y) of the class L2(Ω, C(S1)) we have∫
Ω×S1

Φ(~x, y)dµt(~x, y) =
∫
Ω

∑
~p∈Z2\{0,0}

|Bp|2Φ
(
~x, cos−1

{
~p · ∂x1

~X

/( 2∑
i=1

(~p · ∂xi
~X)2

)1/2})
d~x. (4.6)

In (4.5) and (4.6), ~p is a multi-index (p1, p2), δ is the Dirac delta-function, and Bp =
∫
(0,1)×(0,1)B(~θ)

e2πi~p·~θ d~θ are the Fourier coefficients of B(~θ).
Representation (4.5) implies that, firstly, the Tartar equation in Model B can be replaced with

equation (4.4) which makes it possible to extract all information about the evolution of the H-measure
and, secondly, the effective coefficients Λij in Model B can be expressed explicitly in terms of B(~θ). Thus,
the original Model B is reduced to a form, not involving the notion of H-measure, in which (by analogy
with the classical theory of averaging of periodic structures) we have a direct connection between the
shape of a weakly convergent sequence of oscillating distributions and the shape of the limit effective
characteristics of a homogeneous medium.

The author expresses his gratitude to Corresponding Member of the Russian Academy of Sciences,
Professor P. I. Plotnikov for many useful discussions.
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