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Abstract

The linearized model of joint motion of an elastic heat-conducting porous skele-
ton and a viscous compressible thermofluid filling the pore space is considered. It
is assumed that the pore space has a periodic geometry and the model incorporates
a small parameter, which is the ratio of micro- and macroscopic length scales. A
homogenization procedure, i.e., a limiting transition as the small parameter tends
to zero, is fulfilled. It is established as the result, that the limiting distributions
of displacements and temperature solve a well-posed homogenized linear model of
thermoviscoelasticity with shape and heat memory. Moreover, the coefficients of
the homogenized model are uniquely defined by data given for microstructure. The
homogenization procedure is fulfilled fully rigorously by means of the two-scale con-
vergence method.

Introduction

We consider the linearized model of thermoporoelasticity, namely, the linear dynamical
model of joint motion of an elastic porous ground and a viscous compressible fluid, entirely
filling the pore space, with taking into account heat-conduction phenomena. Equations
of thermoporoelasticity are in focus of specialists in various fields of mechanics because
of many reasons: for example [4, 15], the enhanced recovery of gas, oil and geothermally
heated water depends upon flow in porous strata; underwater acoustics involves propa-
gation in the water-saturated bottom of the ocean; liquid waste disposed of underground
seeps into pores; pore fluids in the ground are believed to play a role in the triggering
earthquakes.

The major difficulty in studying thermoporoelasticity is due to the following fact. The
thermomechanical properties of the solid skeleton and the porous fluid are very different,
and at the same time pore diameters are very small comparing to the size of the en-
tire porous body. This implies that, whenever domains occupied by the solid and liquid
phases are distinguished in analysis, i.e., description of the thermomechanical system is
fulfilled using microscale, the corresponding mathematical models exhibit rapidly oscilla-
tory regimes. Therefore analysis of these models is likely to be ill-fated in applications,
especially in numerical simulations, because amount of calculations may be impossible
even for supercomputers.

However, it is well-known (see, for example, [6]) that on a length scale much bigger
than diameters of single pores, in other words, on macroscale, porous media have stable
physical properties (compressibility, heat-conductivity, viscosity, etc.), which are called
average or effective characteristics of media and which are, in general, different from
the corresponding characteristics of the distinct phases. Thus there arises the problem
to evaluate effective characteristics and derive effective macroscopic equations, starting
from data given for heterogeneous microstructure. This is called a homogenization prob-
lem. It consists of carrying-out and justification of a limiting transition in equations
of microstructure, as the small parameter (say, €) — ratio of characteristic micro- and
macroscale lengthes — tends to zero.



The main aim of the present work is to solve the homogenization problem for the model
of linear thermoporoelasticity under consideration in a mathematically rigorous way, un-
der assumptions that the porous ground has a connected periodic geometric structure
and that the physical characteristics of each phase (viscosity, elasticity, heat-conductivity,
heat-capacity coefficients, etc) do not depend on . We fulfill and rigorously justify the
homogenization procedure by means of the two-scale convergence method. As the result,
we construct a well-posed model of linear thermoviscoelasticity with shape and heat mem-
ory effects. Moreover, all coefficients in the equations of the homogenized model, in other
words, effective coefficients, are defined uniquely starting from data give for microstruc-
ture. This study is somewhat close to the work [9], devoted to application of the two-scale
convergence method to homogenization of poroelasticity without thermal effects, and may
be regarded as its continuation in the case when thermal conductivity is essential.

The rest of the paper is organized as follows. In Sec. 1 we give the description of
the heterogeneous microstructure, which incorporates a small parameter € > 0 and is our
starting point. We recall the existence and uniqueness theorem for this model and state
the uniform in € bounds on its solutions. In Secs. 2.1-2.2 the main results of the paper
are formulated as theorems 1 and 2 and the statement of averaged problem B. In Sec 2.3
the conclusions about physical sense and mathematical well-posedness of problem B are
made. In Secs. 3-4 theorem 1 is proved and the homogenized model, i.e., statement of
problem B, is constructed. Sec. 5 is devoted to justification of theorem 2 and ends the

paper.
1. Heterogeneous model of linear thermoporoelasticity on microscale

According to the fundamentals of continuum mechanics [18, ch. I], the joint mo-
tion of a heat-conducting elastic porous body and a viscous thermofluid is described by
the mass, linear momentum, and energy balance equations, the first and second laws of
thermodynamics in each phase, individual state equations, determining thermomechan-
ical behavior in each phase, and certain conditions on solid-liquid interface. Assuming
a priori, that perturbations of the considered thermomechanical system are small about
some rest state, applying in this view the classical linearization formalism [8, §8.1] to the
equations of the model, passing to the proper dimensionless variables, and supplementing
geometry of the porous body with connectivity and periodicity properties, we arrive even-
tually at the closed system of linear thermoporoelasticity equations. The initial-boundary
value problem for this system is formulated below and is considered further throughout
the paper.

Problem A. (Model of linear thermoporoelasticity on the microscale.)

In the space-time prism @ = Q x (0,7"), where T is a positive constant and (2 is an open
unit cube in R?, ie., Q = (0,1)*, divided into two disjoint open sets Q5 and Qf and the
boundary I'c = Q3 N Qf between them, find a displacement field w® = w*(x,t) and a
temperature distribution §° = 0°(x, t), satisfying the equations

82 € 8 5 8 €
ozT,ofa—:;) — divx{aM]D) (m, a_u;> + (cypdivwwE + ozl,divma—ut) — a9f9€>]l} = appsF,

(x,t) € Q3 x (0,7), (1.1a)

o6° ow*
oy 5y = diva (52 V%) — appdivy = + 5, (2,8) € Q5 x (0,T), (L.1b)
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9*we

ArPs~ g div,{arD(z, w®) + (adiv,w® — ap6°)1} = app,F, (x,t) € QF x (0,T),
(1.1c)
00° ow*®
A %divxa—“; FUE, (x,) € 5 % (0,T), (1.1d)
the relations on the interface I'.
0(s) (@0, t) = 00y (20, t), Wi (x0,t) = Wiy (T0,t), o €L, t2>0, (1.1e)

{a\D(z, wi,)) + (o div,wiy) — ozgSHfs))H} -n =

Owiy) S Owpy .
{a,ﬂD(m, 5 ) + (apdlvx'w(f) + a,,dlvxT — ang(f)>]I} -n®, xyel,, t>0,
(1.1f)
%vaﬁfs) -n° = %fvzeff) n°, xyel,, t>0, (1.1g)
initial data
g 13 awa g 15 15
w ‘t:O = wy, 7 t:[): Vo, 0 ’t:O = 90, T c Q, (11h)
and the homogeneous boundary conditions on 0€2:
w'=0, =0, €I, t>0. (1.1i)

Geometry of the domains 25 and € is given and depends on a small parameter € > 0,
which is the ratio of the characteristic lengthes [y and Ly on the micro- and macroscales,
respectively. Since €2 is the unit cube, we clearly have Iy = ¢ and Ly = 1. The formal
description of the geometry of the porous structure is given similarly to [9] as follows.
Firstly, a structure inside the unit pattern periodicity cell Y = (0,1)3 is postulated: we
assume that Y, the solid part, is some open subset of Y, and Yy, the liquid part, is
the complement of the closure of Y, in Y, ie., Yy = Y\ Y,. Secondly, the periodic
repetition of ), over the whole space R? is constructed and it is set that Y* = ), + k,
k € Z*. Evidently, that thus obtained set Es = (J;.zs V¥ and the complement of its
closure E; = R? \ E, both are open sets in R?. The following demand are imposed on
geometry of ), and FEj:

e ) is a connected set of strictly positive measure with a Lipschitz boundary and )y
has strictly positive measure in ) as well.

e E, and E; are open sets in R?* with a Lipschitz interface between them; Fs and E;
are locally situated on one side of their boundary; E; is connected.

Basing on this construction, introduce a regular mesh of size e, covering €2, each cell
being a cube ) with an edge length equal to e. For simplicity always assume that 1/e
is an integer positive. Each cube )¢, i = 1,2,3,...1/&% is homeomorphic to ) by linear
homeomorphism II, being composed of a 1/e-fold compression and translation. Now
define V5, = 115 (Ys), V5; = 1I5(Yy), and, finally,

G= U Y 9= U Y =000

1<k<1/e3 1<k<1/e3
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Clearly, 3 = cEy N Q and Qf = eEs N QL

The domains Q% and 25 are occupied by a viscous compressible fluid and an elastic
solid body, respectively. Equation (1.1a) is a system of three scalar Stokes equations of
fluid dynamics, equation (1.1c) is a system of three scalar Lamé’s equations of elasticity,
and (1.1b) and (1.1d) are the heat equations in the liquid and solid domains, respectively.
Relations (1.1e)—(1.1g) are the continuity equations on the interface I'. for the tempera-
ture, displacement, and the normal stresses and heat fluxes, respectively. In (1.1a) and
(1.1c) and further in the paper by D(x, ¢) we denote the symmetric part of the gradient of
some enough regular vector-function @(x): Dy;(z, ) = (1/2)(0z,05 + 0, 04), 4,5 = 1,2, 3.
The rest of the notation for differential operators in the paper is standard. By I we de-
note the identical transformation in R?, i.e., I = (d;;), where ¢;; is Kronecker’s delta. In
(1.1e)—(1.1g) the following notation for values on the interface I'; is used: for any @y € I';
and for any function ¢°(x), continuous inside 2% and inside %, set

Plo(@o) = lm (), ¢fp(@o) = lim ().
x € Qf x € Qf
Vector n°(zy) is the unit normal to I'. at a point @, pointing into €25.

Constant positive dimensionless coefficients o, o, ay, o, ay, au, g, Qgs, o, 25,
%5, Pf, Ps, Cpfs Cps do not depend on e. Along with dimensionless functions VS(«, 1),
V% (x,t), and a vector-function F(x,t), they are given and relate to the dimensional
physical characteristics of the problem via the following identities:

1 2 24 2\ K YogLo
Oél,:—<V——ILL>, oy = —, Q) = —, ap = —, ap = o5
PoTo 3 DoTo Po Po &
1 2 L? <NV K9
O‘n:_<77__)‘>’ aT:’yg S’ O‘Gs:’ynoy a@fzfyf 07 F:F//g’
Do 3 CoTo Po DPo
Y Y !
np = 9%}, Hs = 702 Sad pr= &» we = Oyl
Lipo Lipo Po Do
p/s 190 / 190 / € T0 1.7
Ps = —, Cpf = —Cpp, Cps = —Cp,, V5= —U.
Po v/ Do »f P po "’ J Po f

Here Ly = 1 is the characteristic size of €2; 7y is a characteristic duration of physical
processes; g is the gravity acceleration; py is the atmosphere pressure; pg, cg, and vy =
7/5 are respective mean density, speed of sound, and polytropic exponent in air at the
temperature 273 and at the atmosphere pressure; vy is the temperature difference between
the boiling- and freezing-points of water at the atmosphere pressure. Coefficients pu,
v, K, p}, 75, ¢, and ¢, in the fluid phase are respective shear and bulk viscosities,
hydrostatic compression modulus, mean density, heat extension, heat conductivity, and
specific heat capacity at constant pressure. Coefficients \, n, pl, 75, s, and ¢, in the solid
phase are respective shear and bulk elasticity moduli, mean density, heat extension, heat
conductivity, and specific heat capacity at constant pressure. These physical dimensional
characteristics of the fluid and the solid are constant and correspond to the rest state, in
the neighborhood of which the linearization procedure for the basic nonlinear model was
fulfilled. Finally, F" is a density of distributed mass forces and ¥/;_ and ¥/_ are volumetric
densities of external heat application in the fluid and the solid phases, respectively.

Now let us introduce some notation and then formulate a definition of generalized
solution to problem A. By y and x° denote the indicator functions of £ in R?® and of Q5

4



in , respectively:
() = 1 if xeky, (a) = 1 if e,
MEZ00 it zerRN\NE, YW Tl0 i zeQ\ 0
In view of the structures of the sets £y and Q‘} it is clear that

@ =x(3), weca

and that y is 1-periodic in R3. Set
p"=Xpr+ (1 =X)ps, g =x"apr+ (1 —x)ags, ¢, =x"cpp + (1 —X)cps,
s =X+ (1= X)3es, WE = X054 (1 — x°) V5.

Definition 1. A pair of functions (w*,6°) is called a generalized solution of problem A,
if it satisfies the reqularity demands

ow*®
w® € W, (Q), )f]DD(gc, —
ot
the boundary conditions (1.11) and initial condition w*|,—g = w{ in the trace sense, and
the integral equalities

/Q(afps% . %—f — {XE [aﬂ)(m, %) + (ozpdivst + aydivx%ﬁ]

+(1—x9) [oz,\]D)(x, we) + (andwzwe)]l} - agésﬂ} Vo + app°F - cp) dadt

) € L2(Q), ¢ € LX0,T;W(Q)), (1.2)

+ / a;p°vg - p(x,0)de =0, (1.3)
0

5 €8¢ 15 5 5 . € 8¢ e
/Q(cpe S AVl Vot ag(dinw’) o+ 0 z/1>d:1:dt

+ / (505 + agdiv,w) Y (x, 0)de =0 (1.4)
0

for all smooth test vector-functions @(x,t) and scalar functions (x,t) vanishing near
0 and in a neighborhood of t =T.

Remark 1. On the strength of regularity properties (1.2) and the well-known facts from
the theory of Sobolev space W4 (), a generalized solution of problem A (if any) necessarily
satisfies conditions (1.1e) on ' in the trace sense. In view of condition (1.le), after
integration by parts, integral equalities (1.3) and (1.4) yield equations (1.1a) and (1.1b)
in Q% x (0,T) and equations (1.1c) and (1.1d) in QF x (0,T) in the distributions sense,
and initial relations ws|i—y = v§ and 0°|,—o = 0f, and conditions (1.1f) (1.1g) on I'® in
the trace sense. Thus the above introduced notion of generalized solutions is consistent
with the formulation of problem A.

The following statements of the well-posedness of problem A and the bounds on so-
lutions are justified by the classical methods in the theory of generalized solutions of the
problems in mathematical physics [11]. An extended proof can be found in [12].
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Proposition 1. For all fited ¢ > 0, for any given data w§ €W, (Q), v§, 05 € L*(Q),
F° 0¢ € L*Q) problem A has a unique generalized solution (w®,6°) in the sense of
definition 1. This solution admits the energy estimate

esssup([[w Ol + V207 (OB + 107 () + XDl 00 Basiory
€|0,7

+ ess sup(HHE(t)H%,Q + Hvxee(t)|’§§2>

te(0,7]
<Cp- (HFH;QX(O,T) + H‘I’Eng,ﬂx(o,f) + [lwg

20 T IVawglz0 + 0520 + 166]12.0)
Ve (0,T], (1.5)

where Cy = Co(T', aur, vy i, O, iy, Oy Qg Qlgs, O, 25, 2, PF, Psy Cpfs Cps) 45 @ constant in-
dependent of €.

2. Homogeneous macroscopic model of effective thermoviscoelasticity:
formulation of the main results

Theorems 1 and 2 and the statement of averaged problem B below in Secs. 2.1-2.2 are
the main results of the article. In Sec. 2.3 the conclusions about the physical sense and
the mathematical well-posedness of problem B follow immediately from the assertions of
theorems 1 and 2.

2.1. Convergence of the homogenization process. Averaged model.

Theorem 1. Let functions wg, vj, 05, F, and VU® be given and satisfy the assumptions
of proposition 1 and the limiting relations

w§ — wi, weakly in Wy (Q), V& — U weakly in L*(Q), (2.1)
v — Vo(x,y), 05 — O(x,y) in the two-scale sense

for e \, 0 with some functions wy €W3 (Q), ¥ € L*(Q), Vo,00 € L2 Q2 x Y). Let a pair
of functions (w*,0°) be the generalized solution of problem A corresponding to the given
functions wf, v§, 05, F V¢ for an arbitrary fized € > 0 such that e~' € N.

Then, as € \, 0 (7! € N), the sequence (w®,6°) weakly in WH(Q) x L*(0,T; W3 (2))
tends to a pair of functions (w*,0%), which is a generalized solution of problem B, stated
below.

In the statement of problem B, the constant fourth-rank tensors Ay and A, the con-
stant 3 x 3-matrices Cy, Eo, and Eq, the function t — Ay(t) with values in the space of
fourth-rank tensors, and the function t — Cy(t) with values in the space of 3 X 3-matrices
depend only on the geometry of domains Yy and Y and on the quantities o, o, Qv iy,
Quy, Qof, Qgs, 25, and s, and are uniquely defined by equations (4.5)~(4.18) (see in Sec.

4)-

The demand of two-scale convergence, imposed in limiting relation (2.2), is formulated
explicitly in Sec. 3.



Problem B. In the space-time prism @ = Q x (0,7"), where T" = const > 0 and {2 =
(0,1)3, find a displacement field w = w(x,t) and a temperature distribution 6 = 0(z, ),
satisfying the equations

0*w . ow
aTﬁW — dlvx{Ao : ID)(x, W) + Ay D(z, w) — Cof

+/0 Ag(t — 1) : D(z,w(r))dT — /0 Cy(t — T)Q(T)dT} =appF, (z,t) €@, (2.3)

aTcpg(9 leI{EQV 0 — Elﬁaztv} U, (x,t) €Q, (2.4)
initial data
Wimg =w;, €, (2.5)
(Ow/0t)i=0 = vy = (1/){(xps + (1 = X)pa)Vo)y, @€, (2.6)
Olimo = 05 < (1/6,)((xcpr + (1 = X)ep)B0)y, T EQ (2.7)
and homogeneous boundary conditions
w=0 0=0, z€dQ, t>0. (2.8)

Tensors Ay, Ay, and Ay(t), and matrices Cy, Cy(t), Eo, and E; are referred to as given
in the statement of problem B. From the assertion of theorem 1 it is clear that they are
defined only by the data given for the microstructure.

In (2.5) and further in the paper the standard notation for mean value over the
period Y for any l-periodic in y integrable function ¢(x,t,y) is used: (¢(x,t,y))y
[y ¢(z.t,y)dy. In particular, in (2.3) and (2.4) by p and &, we denote the mean den51ty
and heat capacity, respectively: p = |V¢lps + |Vslps and ¢, = |Vy|cpr + |Vs|cps, where
V5] = (dy and [%4] = (1 — )y,

As usually, for any fourth-rank tensor A, and 3 x 3-matrices B, and C, by A, : B, and
(A : B,) : C. we denote inner tensor products in R**? and R, respectively: (A, : B,)y =

S AUMB L (k1=1,23), (A, :B,) : Co =320 AVMB;Cuy.

Definition 2. A pair of functions (w,0) is called a generalized solution of problem B,
if it satisfies the reqularity conditions w € W3 (Q) and 0 € L*(0,T;W}(Q)), boundary
conditions (2.5) and (2.8) in the trace sense, and integral equalities

/Q{mﬁ%—lf . %—(’; — [AO : ]D)(:c, %—1;) + Ay : D(z,w) — Coh

+ /0 Aaft = 7) s Dz w(r))dr - /O - ()T | Vo + arpF - p bt
+ /QozTﬁ'vS(az) ~p(x,0)de =0, (2.9)

ot

for all smooth test vector-functions @(x,t) and scalar functions (x,t) vanishing near
0 and in a neighborhood of t =T

/ {aTape(?f [EOV 0 Elaw} vxw+w}dwdt+ / 06,0 (@) (, 0)da = 0 (2.10)
Q Q



2.2. Properties of the effective coefficients.

Theorem 2. 1. The tensors Ao, Ay, As(t), and the matrices Co, Cy(t), Eo, and E, are
symmetric, i.e., their components satisfy the equalities
AR — AT — piitk — pRG (=0 1,2), CY=CF EY=FE' (r=0,1). (2.11)
2. The fourth-rank tensor AY e/ vAy + Ay + Ag(y) and the 3 x 3-matriz C0 <
Co + Ci(v) are strictly positively defined for v > 0.
3. If the both sets Yy and Ey are connected then Ay is strictly positively defined.
4. If the set 0Y N OYy is empty, in other words, the porous space 25 consists only of

trapped pores, then Aq is zero tensor and Aq is strictly positively defined.
5. The matrices Ey, Eq, and Cy are strictly positively defined.

In item 2 of the theorem by Ay(y) and C;(v) the respective Laplace transforms of
Ay(t) and Cy(t) are denoted, and at the same time it is assumed that Ay(f) = 0 and
Cy(t) = 0 for t > 0. Recall that the Laplace transform of an arbitrary locally integrable
and not fast-increasing on the semi-axis (0, 00) function ¢(t) is defined by the formula

@(v) = Llpl(v) = /OOO (t)e Mdt, > 0.

2.3. On physical significance and mathematical well-posedness of problem
B. In view of the obtained in theorem 2 properties of symmetry and positive definiteness
for the tensors and matrices of the effective coefficients, problem B is identified as an
initial-boundary value problem for a model of linear thermoviscoelasticity with memory
of shape and heat, except for the case of the trapped pores (see item 4 of the theorem),
in which the homogenized model takes the form of a model of linear thermoelasticity.

Comparing with the well-known formulations in the linear theory of thermoviscoelas-
ticity (see., for example, [6, ch. 4, 9] and [19, ch. 6]), we conclude that A is the effective
viscosity tensor of the averaged medium, A; is the effective instantaneous elasticity tensor,
Cy is the matrix of effective heat extension, [Eq is the matrix of effective heat conductivity,
[E; is the matrix of effective coefficients characterizing irreversible heat generation due to
viscosity friction, and As(t) and C,(t) are the relaxation functions determining influence
of thermomechanical history of the medium during the period (0,¢) on the current state
at the moment ¢.

Following [3, 5], we may notice that in the case, when the pore space is connected
(see item 3 in theorem 2), the fluid viscosity terms dominate the solid stress terms.
Such a thermomechanical system can be compared to an unconsolidated, saturated heat-
conducting marine sediment. Such a sediment possesses low skeletal rigidity. Nevertheless,
such a medium possesses a dissipative rigidity that is capable of supporting shear. Quite
the contrary, in view of item 4 of the theorem, in the case, when all pores are trapped,
the viscosity phenomena become subtle in effective macroscopic behavior of the medium
and the solid stress terms dominate.

On the strength of theorem 1, problem B is solvable in the sense of definition 2, pro-
vided with the condition that the coefficients of equations (2.3) and (2.4) admit certain
relations with data of the microstructure, since some solution of problem B can be con-
structed as a limit of solutions of problem A, as ¢ \, 0. At the same time, it should
be noticed that, if we assume that the coefficients of equations (2.3) and (2.4) a priori
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satisfy the properties in assertions of theorem 2, then the conclusion about well-posedness
of problem B is correct independently of whether problem B is connected with the mi-
crostructure, or not. More precisely, the following proposition holds true.

Corollary of theorem 2. Assume that the tensors and matrices of coefficients of equa-
tions (2.3) and (2.4) have the properties, stated in items 1, 2, and 5 of theorem 2, and
satisfy the inclusions Aéjkl,C’fj € L*(0,T) (i,5,k,l =1,2,3). Let all of them be, in prin-
ciple, irrelevant to the data given for problem A.

Then for any given initial distributions wg €Wy (), vg, 05 € L*(Q) and right-hand
sides F, W € L*(Q) of equations (2.3) and (2.4), there exists a unique generalized solution
of problem B, in the sense of definition 2.

PROOF OF THIS COROLLARY is by the quite standard considerations, therefore we
confine ourselves to a brief scheme of the proof.

On the strength of the well-known properties of Laplace’s transform (see, for example,
2, ch. 4], [14, ch. 3]), applying formally Laplace’s transform to equations (2.3) and (2.4)
and taking into account the given initial data we arrive at the Dirichlet problem for the
system of two second-order partial differential equations as follows:

div, { A7 : D(z,w") — C0"} — a,py*” =
div, {Ap : D(z,w)} — playvp + a,wy + apF), T €Q, (212a)

div, {EoV,0" — 1B} — 0,600 = —div, {Eyw)} — a, 6,05 — 07, € Q, (2.12b)
w'=0, 07=0, x€. (2.12¢)

Variable v > 0 enters this problem as a parameter.

On the strength of the strict positive definiteness of tensor A” and matrix Eg, equation
(2.12a) is uniformly elliptic with respect to the unknown function w”, and equation
(2.12b) is uniformly elliptic with respect to the unknown function 7. Due to this and the
strict positive definiteness and symmetry of matrices [E; and C7, it is true that problem

(2.12) has exactly one generalized solution (w”,07) €W2(Q) for any given w}, eW3 (1),
F U7, 05, v € L2(Q), for any fixed v > 0.

Verification of this assertion is fulfilled within the framework of the well-known theory
of generalized solutions to elliptic equations [11, ch. 2]|. Indeed, multiply equation (2.12a)
by vE1(C?) "' and equation (2.12b) by 67, integrate the obtained equations with respect
to x on (2, integrate by parts in « in all summands involving operator div,, except for
just one arising from (2.12a) and having the integrand —vE;(C?) " 'aw” - div,(C76"), sum
up the resulting equations, and fulfill some certain simple algebraic transformations of the
integrands, using the facts that two positive definite and symmetric matrices E; and C”
can be brought to a diagonal form by the same orthogonal transformation (say, Q7) and
that (C7)~!, as well as C7, is a symmetric matrix and can be brought to a diagonal form
by the transformation Q7. These technical procedures, in particular, bring the integrand
—yE1(CY) ' - div, (C707) to the form —yE,” - V,07. The latter integrand cancels with
the similar term arising from equation (2.12b), and, thanks to this, we eventually arrive



at the energy identity
B *V,67115 0 + 705 l187 |30 + v a-p|By*(CT) 720073

+ /Q (A7 : D(z, B> (C7) 2" : D(x, B (C7) ") dae
= /Q v(Ag : D(x, EY*(C7)"V2wp)) - D(a, By (CT) V2w da
+ /QIE}/Q(CW)l/Qﬁﬂ : {ﬁE}/z(Cﬂflﬂ(vaT?J(’j + a,w + ozpﬁ’v)}dm
+ /Q {—(Byw}) - Vo0 + a,e,050" + 067 Ve, ~ > 0.

Applying Cauchy’s, Holder’s, and Korn’s [16, ch. 3, §3.2] inequalities and taking into
account strict positive definiteness of tensor A7 and matrices Eg, E;, and (C?)~!, from
this identity we derive the energy inequality

w30 + Sl Vw50 + 107150 + I Va2
. .
< dllwillzo + GlIVawillzo + A0 150 + GIF 50 + V750, 7> 0.

Here all constants ¢ are nonnegative and depend merely on . Moreover, the constants
with indices ¢ = 1, 2, 3,4 are strictly positive. Relying on this estimate we finish the proof
of the unique solvability of problem (2.12) precisely following the lines of [11, ch. 2, §2,
theorem 2.1, §3].

Finally, applying the inverse Laplace transform in v to the solution of problem (2.12)
and following the considerations from [11, ch. 3, §4; ch. 4, §7] or from [7] we deduce the
solution of problem B in the form

1 Yy1+1%00
w(w,t) = L[] = — / @ (@) dy,
Y

270 ) oo

R 1 mtico
O(x,t) = L7] = 2_m/ ' 0 (x)e dry.
Y1—10

This solution is unique due to one-to-oneness of £ and £71. n

3. Proof of theorem 1 (part I): the two-scale convergence method
and weak and two-scale limits of solutions of problem A

In this section we outline the notion of two-scale convergence and then derive the
system of two-scale averaged equations from equations of problem A with the help of this
notion by a limiting transition as € N\, 0. This derivation is the first step in the proof of
theorem 1.

Definition 3. (G. Nguetseng [13].) The sequence {p°} C L*(Q) is said to two-scale
converge to a limit ¢ € L*(Q x ), if and only if for any I1-periodic in y function o =
o(x,t,y) such that o € L*(Q x Y) one has

lim cp%w,t)a(a:,t, f)da}dt :/ o(x,t,y)o(x,t,y)dedydt.
N0 Jg € QxY
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Existence and the basic properties of two-scale convergent sequences is established in
the following fundamental theorem [1, 13].

Theorem TS. 1. From each bounded sequence in L*(Q) one can extract a subsequence
which two-scale converges to a limit p € L*(Q x ).

2. If a sequence in L*(Q) two-scale converges to two functions o1, ps € L*(Q x V)
simultaneously, then ©1 = @9 a.e. in Q X Y.

3. Let {¢°} and {V,p.} be bounded sequences in L*(Q). Then there exist functions
© € L*(Q) and ¢ € L*(Q x Y) and a subsequence {¢°} such that v is 1-periodic in y,
Vb € L*(Q x V), and both {¢°} and {V,p°} two-scale converge to ¢ and V p(x,t) +
V,(x,t,y), respectively.

Remark 2. Let 0 € L>()), continue o from Y onto the whole space R® by periodic
repetition, define o°(x) = o(x/e) (x € Q), and let the sequence {p°} C L*(Q) two-scale
converge to a limit p € L*(Q x V). Then from definition 3 and theorem TS it is easy to
see that {o°¢°} two-scale converges to the limit o(y)p(x,t,y).

Now turn to consideration of the limiting transition in the equations of problem A,
as € \, 0 (¢7! € N). On the strength of proposition 1, the sequences {w®}, {d;w°},
{0°}, {V.0°}, {x*D(z, dw*)} are uniformly bounded in L*(Q). From this, theorem TS,
and remark 2 it follows that there exist a subsequence from {¢ > 0|e~! € N} and four

functions {w* € W} (Q), 6* € L*(0,T; W, (Q)), W,0 € L*(Q x Y)} such that

X(y)(D(z, Qw*) + D(y, W), V,W.V,0 € L*(Q x Y);

W,0 are l-periodic in y; (3.1)
w® — w* weakly in W3 (Q),
6° — 0" weakly in L*(0,T; W, (Q)), (3.2)
V,w* — Vyw'(xz,t)+V,W(x,t y),
V.05 — V.0 (x,t)+V,0(x,t,y),

l

XE]D(I78,5U)€) X(y) (]D('r’atw*) +D(y7atw(w’tay)))

in the two-scale sense, as € \, 0. (3.3)

Substitute the test functions of the forms
T T
<p:(p1(w7t>+8(lo2<w7ta g>7 w:wl(m7t)+8w2<wat7 g>7

where @, (x,t), py(x,t,y), ¥1(x,t), and Yo(x,t,y) are arbitrary smooth functions, van-
ishing near 02 and in a neighborhood of t = T" and such that ¢, and 1y are 1-periodic in
y, into integral equalities (1.3) and (1.4). Now, due to such choice of test functions and
on the strength of relations (2.1), (2.2), (3.2), and (3.3), extracting a proper subsequence
from {¢ > 0, e7! € N} (if necessary) and passing in integral equalities (1.3) and (1.4)
to the limit as € ™\, 0, we deduce the system of the averaged two-scale equations, which

11



consists of the following four integral equalities:

_Ow* Op, ow* . . Ow* .
/Q{&T'OW vl [D}f] (a”}D)(:c, W) + (apdlvsz + Oé,/lexW — ays0 )H)
+ |V (ozA]D)(:v, w*) + (adiv,w* — agse*)}l)
oW (x,t,y . . OW(x,t,y
+ <X(y) (oz“ID)(y, %) + (apdlvyW(zc,t,y) + aydlvy%ﬂ)
(1= X)) (D, W (@.1.9) + (oydiv, W (@, ty)D)) | 2 Vospy + axpF - py fdadl

" / o (()pr + (1= X@)p) V(@) - (@, 0)da = 0, (3.4)

/Qxy{x(y) [auD(a:, %) +a,D(y, %{ty))

) t
+ (apdiv,w* + a,div, W (z, t,y) + a,,divxég—u; + aydivyw

+ (1= x(y) [aa(D(z, w") + D(y, W (=, t,y)))
+ (apdivw® + oy, div, W (z, t, y) — cg,07)]] } : Vypo(z, t,y)dedydt =0, (3.5)

) dw*
/{%@W% — [(ny!%f + [ Vsl 225) Va0 — (1 V¢l + | Vslass) g;
Q

() + (1= X))V, 0@, ,9))y | - Vathy + Wiy pa

+ [ aldwies + (1= X)) ul.y)y (@, 0)dz =0, (36)
Q

. ow*
/ {X(y) [%szQ +oVyO(a,t,y) — aor—, }
QXY
. ow*
+ (1 —x(y)) [%SVQCO +,V,0(z,t,y) — agsw} } -Vya(z, t, y)dedydt = 0. (3.7)

Due to the sufficient arbitrariness of the functions ¢, ¢4, ¥, and 1, system (3.4)—
(3.7) is closed, because it is equivalent in the distributions sense to the initial-boundary
value problem for the system of eight scalar equations involving eight unknown functions
wi(zx,t), Wi(e,t,y) (i =1,2,3), 0*(x,t), and O(x,t,y).

The following assertion holds true.

Proposition 2. For any given w*|,—g EWH), V,00 € L2(Q x V), and F,¥ € L*(Q),

system (3.4)~(3.7) has a unique solution w* € W3 (Q), 6* € L*(0,T; W} (2)), W,0 €
L*(Q x V). This solution possesses the regularity properties (3.1).

Existence of solutions has been already proved by the limiting transition as € \, 0.
The proof of uniqueness follows the lines of [9, lemma 5]. O
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4. Proof of theorem 1 (part II): derivation of homogeneous equations (2.3)
and (2.4), structure of effective coefficients

Let us resolve equations (3.5) and (3.7) with respect to the functions Wz, t,y) and
O(x,t,y), assuming that w* and 6* are given. To this end we employ the method of
separation of variables. That is, we seek for solutions W and © having the forms

Wz, t,y) = Z <}D)ij(x, w'z, 1) ZY (y) —|—/O Dy (z, w*(x, 7)) ZY (y,t — T)dT)

ij=1

—l—/ot@*(zc,T)Zg(y,t—T)dr, (4.1)

3
00" . ow;
Oz, t,y) = ( i igi ) 4.2
(z,t,y) ; 52, W) + 5 h(Y) (4.2)
where the vector-functions Z%, Z5 and Zs and the scalar functions g and g} are to be

determined. Substituting (4.1) into (3.5) and (4.2) into (3.7) after some rather simple
technical transformations we arrive at the integral equalities

3
ow* 5 5 3
E Dy, (x, el > [aM]D)(y, Z7) + (divy Z7) I+, JY + Ozl,éijﬂ : Vo,
QXY ji=1 at

+ Z Dij<x7 w*(wa t)) [a#D(ya Zg(ll/a O)) + (C“VdiVyZéj(ya O))H

/ Z]D)” (z,w"(x T))[Q#D(y %)

i,5=1

+ap (leyZ (y) + 0i)I] + Vyipy —

g iJ _
— (opdiv, Z3 (y,t — 7)1 + <aydivyw>ﬂ] dr| : Ve,

or
+ 6 (x,t) [, D(y, Z3(y,0)) + (ewdivy Z3(y, 0)) I — cgsl] : Ve,

[/ 0*(x, 1) O‘u < 8Z3(ya,T >> — (apdivy Zs(y,t — 7))

Zs(y.t —
+ @MWW)H} dT] : VyQOQ}dwdydt

3
+ / {Z Dyj(z, w*) [anD(y, Z7) + (aydivy Z9)1+ axJ¥ + ;6351 = Vyepy
QXVs

=1

/ Z Dij(z, w*(z, 7)) [enD(y, Z5 (y,t — 7)) + (v, div, Z5 (y,t — 7))I]dr

4,7=1

: Vyp,

/0 0" (2, 7) [xD(y, Za(y, t — 7)) + (gdiv, Za(y, t — D)]dr| : Vo

— 0" (apsdivyp,) }da;dydt =0, (4.3)
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3 3
00 ; , ow’ , .
/ { E (55 Vygl + 5€”) - Vyiby + g a—tj(%fvyg% — apre’) - Vng}dwdydt
QX Yy j=1

= 85Ej
~ 09" iy o =~ O J j
+ o Z%(%Svygﬁxse )-Vy¢2+z W(%SVyQQ—OéQSG )-Vyiby pdadydt = 0.
xYs (=1 i j=1
(4.4)

In (4.3) and (4.4) by €’ the standard vectors of Cartesian basis in R? are denoted; J* L
(1/2)(e' ® e/ + e/ ® €') is the 3 x 3-matrix, in whose definition the expression e* @ €'

stands for the diad of two basis vectors, i.c., (€' ® e')a < qe* for any a € R®.

From the structure of integral equalities (4.3) and (4.4) it follows that they hold true
independently of all possible solutions w* and * and test functions ¢, and 15, whenever
we demand that the functions Z¥, ZY, Zs, ¢, and gi solve the following boundary
value problems in the pattern cell J. (We state these problems using the variational
formulations, like in [9, 17].)

Vector-function Z% (i,§ = 1,2,3) is determined by the linear system

/ (0. D(y, Z7) + (o, div, Z))T + e, J7 + @,,851) : Vyp(y)dy = 0, (4.5a)
Vi
Ve € Wi (V) (g is 1-periodic),

/ (axD(y, Z7) + (adivy, Z9) T + anJ? + ayd51) = V,B(y)dy =

/ay oy (a\D(y, Z7) + (andiVyZ’ij)]I + axJ? + a0, n(oy) - B(oy)do,, (4.5b)
VB3 e W3 (Y) (8 is 1-periodic),
Z7V e Wy(V)/R, (0Z7)ot) e WH(Ys)/R, ZY: R R?is l-periodic.  (4.5¢)

Here by n the unit normal to 9Ys, inward with respect to Yy, is denoted.
Next the problem for the initial value of the kernel Z3 (i,j = 1,2, 3) is formulated:

/y (euD(y, Z5 (y,0)) + (wdiv, Z5 (y,0))L + (apdivy Z7 (y))L + by D) : Vyip(y)dy =
f
- / (Oz,\]D(y, Z7) + (O‘ndivyz?)l +anJ¥ + O‘n(sij]l)n(ay) - p(oy)doy, (4.6a)
OV\OY

Ve € W) (Yy) (g is 1-periodic),
ZY(-,0) € W (V5)/R, ZY(-,0): R®— R? is 1-periodic in y. (4.6b)

In (4.6) the vector-function ZZIJ is assumed given.
The value of the kernel Z3 (y,t) (i,7 = 1,2,3) is determined in ) x (0,7") by the
system

0Z9 (y,t L . 0ZY(y,t
/y {OAH]D)(y, %) + (apdivy, ZY (y,t))I + <ayd1vy$)]l} 1 Vye(y)dy
1

), {aD(y, Z5 (y,1)) + (v div, Z5 (y, )T} : Vyp(y)dy =0, (4.7a)
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Ve e WH(Y) (¢ is 1-periodic),
Z¥(y,0) is given in Y by (4.6), (4.7b)
Z3i € L=(0,T; Wy (V)/R), (9Z3 /ot) € L*(0,T; W5 (Vy)),
Z9: R®x (0,T) — R? is 1-periodic in y. (4.7¢)
Analogously we formulate the problems for Z3(y,0) and Z3(y,t):

/ {aM]D)(y, Z3(y,0)) + (o div, Z5(y,0))I — Odgf]I} : Vyo(y)dy — / agsdivyp(y)dy = 0,
Vs

B

(4.8a)
Ve e WH(Y) (¢ is 1-periodic),
Z3(-,0) € W (Vy)/R,  Z3(-,0): R*— R? is 1-periodic in y, (4.8b)
and, correspondingly,
Z3(y,t) satisfies the system of (4.7a) and (4.7c), (4.9a)
Z3(y,0) is given in Yy by (4.8). (4.9b)

Finally, the functions ¢/ (y) and ¢J(y) are determined by the problems

/y 2 (Vygl(y) + €) - Vo (y)dy + / 2 (Vygi(y) + €) - Vyb(y)dy =0,  (4.10a)

Vi € Wi(Y) (¢ is 1-periodic),
g e WiY)/R, g¢l: R®— R is l-periodic, (4.10b)

and

/y (%nyg%(y)—aefej)-Vyw(y)dy+/ (5:Vy 95 (y) — cuee’) - Vi (y)dy = 0, (4.11a)

s

Vi € Wi(Y), (¢ is 1-periodic),
g e Wi(Y)/R, g): R®— R is l-periodic. (4.11b)

The following proposition implies the demand from the functions Zilj VA éj , Z3, g%, and
g5 to solve the above stated problems makes sense. Hence the two-scale limiting functions
W and © admit representations (4.1) and (4.2). Moreover, these representations are
unique.

Proposition 3. Let geometry of the sets Yy and Vs be prescribed and the coefficients o,
Qp, Q, Ay, Oy, Qgf, Qgs, 25, and s be given. Then each of problems (4.5)~(4.11) has a
unique solution.
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PRrOOF. Formulations of problems (4.5)—(4.9) are just slight modifications of the state-
ments of the problems in the pattern cell ) from [9, Sec. 2.4]. Accordingly, verification
of the well-posedness of problems (4.5)—(4.9) follows the lines of [9, Sec. 2.4, see lemmas
6, 7, 9, 10] without essential modifications, relying on the well-known facts and methods
in the linear theory of partial differential equations, like the Lax—Milgram lemma, Korn’s
and Poincaré’s inequalities, the Galerkin method, etc. Problems (4.10) and (4.11) are
particular cases of the simplest periodic elliptic problem, whose unique solvability is well-
known and can be found, for example, in [10, ch. 1]. [

Substituting (4.1) into (3.4) and (4.2) into (3.6), we immediately arrive at the integral
equalities (2.9) and (2.10) for w(x,t) = w*(x,t) and O(x,t) = 6*(x,t) such that the

components of tensors Ay, A;, and Ay(¢) and matrices Cy, C;(t), Ey, and E; in these
integral equalities are given by

A = [y (@t + i) + o () Dialy, Z9 (), + andia{x()div, 27 Wi
4.12

AT = Vgl ii0m + [Vl (xdide; + andiion)
+ 5kl<x (Ozpdivyzij( ) + al,dlvyZ” (y, 0))>y
+ a, (X (Y) Dy, Z5 (4,0))),, + bl (1 — x(y))div, Z{ (y))
+ax((1 = x())Dw(y, Z7 (y))),, (4.13)

i . 0Zi(y;t
AP (1) = (5kl<X(?J) (apleyZ2](y’ b+ a,,dwy$>>
Y

+ Om<x(y)Dkz (v, _az;ﬂaiy, ‘) ) > + X (y)div, Z5 (. 1)),
y
+ Oé)\<X Dkl(ya Z 7t))>y> (414)

Cy = |Vylawgdij + |Vslansdiy — (x(y) (. di;div, Zs(y, 0) + @Dy (y, Zs(y, 0))) ), (4.15)

i . . 0Z3(y,t
CY(t) = —5ij<x(y) <apd1VyZ3(y, t)+ ozl,dlvy—“}(? ))>
Y

- au<x<y>m (1 2Zele2)y >y

— a0 (1 = x(¥))divy Zs(y, 1)), — axn((1 = x(y))Dis(y, Z3(y, 1))y, (4.16)

ij N N _ ag{(y)
Eg = |Yylsep0i5 + | Vsloesbiy + { (x()5er + (1 — x(y))2) . : (4.17)
Yy
i ) | 993 (y)
E1 - |yf|059f52] + |ys|a/956i] - (X(y)%f + (1 - X(y))%s) ay 3 (418)
Yy
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0§, k1 =1,2,3.

Since the vector-functions Z gj and Zj3 satisfy the regularity conditions (4.7c), one has
Agj M C’fj € L*(0,T). Due to this and on the strength of the regularity properties of func-
tions w* and 6* (see in Sec. 3), all the integrals in (2.9) and (2.10) are well-defined. Also
notice that, due to the uniqueness assertion in proposition 2, all convergent subsequences
of {w®,6°} (¢7' € N) has the same limit {w*,§*}. Hence the entire sequence {w®, 6°}
(7! € N) is convergent. Theorem 1 is proved. O

5. Proof of theorem 2

1. We prove the assertion of item 1 for the tensor Ay only. For A, Ay, Cy, Cq, Ey,
and E; the symmetry property is verified by quite analogous considerations.
Inserting ¢ (y) = Z{ (y) as the test function into (4.5a), which is legal, we deduce

AT () [0, (5, 2T () + wbdiv, 2T ()],
= —(x(y) [uD(y, Z7 (y)) : Dy, Z{ (y)) + cwdiv, Z7 (y) - div, Z{ (y)]),,

(,7,k,1 = 1,2,3). The right-hand side in this equality stays unchanged, if we interchange
places of the pairs of indices (7, j) and (¢, 7), and the left-hand side stays unchanged, if we
interchange places of the indices ¢ and j. Combining these two features we conclude that
the tensor Ag; = {AY/"} is symmetric in the sense of the equalities (2.11). In turn, on
the strength of (4.12), we have Af)jkl = | Vr|(u0idjr + 0ii0k) +A§iij, which immediately
implies the symmetry property for A,.

2. We outline precisely justification of the assertion in item 2 of the theorem for the
tensor AY only. The proof for C7 is quite analogous and we skip it.

Introduce into consideration the stationary problem arising as the result of application
of Laplace’s transform in ¢ to the integral equality (4.7a) (as usually, we consider that
all the time-dependent functions in (4.7a) are extended by zero to the right outside the
interval (0,7)):

For 7,5 = 1,2, 3 find the vector-function Af/j = Af'yj(y) satisfying the system

| oD A) - 0, (0. 251(5.0)) + (aydiv, A5 )1
f
+y(aydiv, A (y))I - (a,div, ZY (y, 0))} : D(y, (y))dy
s {aAD(y, AY (y)) + (aydiv,AY (y))I} : D(y, p(y))dy = 0,
S Vo e Wy(Y), ¢ is l-periodic, (5.1a)
A7 e Wi (Y)/R,  AY: R®— R’ is l-periodic. (5.1b)

The variable v > 0 enters this problem parametrically.

As in the proof of proposition 3 we notice that this problem is a particular case of the
simplest periodic elliptic problem [10, ch. 1] and therefore has a unique solution for all
v > 0. Clearly, AY(y) is Laplace’s transform in ¢ of Z9(y,t). Thus the components of
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the tensor Ay(y) can be written in the form
flgjkl(v) = 5kl<x(y) (ozpdivyAij(y) + 7ozl,divyAij (y) — ozydivyZéj (y, 0)>y
+ a(x(w) [P (v, AY () — Dia(y, 25 (y,0)] >y

+04n5kl<X dlvyA” )>y—I—a,\<x(y)Dkl(y,AQj(y))>y. (5.2)

Let X = (Xj;) be an arbitrary constant symmetric 3 x 3-matrix. Multiply integral equal-
ities (4.5b), (4.6a), and (5.1a) by X;;, and integral equality (4.5a) by 7.X;;, sum up the
resulting equations, assuming that all test functions are the same, in particular, that
B(y) = ¢(y), and then sum over i and j. As the result we deduce

[ (oo [o0 22 otz + a500)
+ (o, + ) [divy(i Xi;(Z7 (y) + A?(?J))) +tr X} ]I} : Dy, p(y))dy

1,j=1

+ /s{ax [D(% 23: X3 (ZY (y) + Aij(y))) * X}

+ oy [divy(i Xi;(Z7(y) + A?(y))) + tr X}H} :D(y, p(y))dy =0, (5.3)

where ¢ € W3 ()) is an arbitrary 1-periodic function.
Also introduce the quadratic expression

def a a . ’ i 1j ij 2
L0 [ o) + ot —xw))[p(y ZX (27 ) + A2 () + % ay
+/y((ap+’vozy)x(y)+an(1—x(y))) divy<i;Xij(Zl () + AY(y)) dy.
(5.4)

which is evidently nonegative. Substituting the test function ¢(y) = Z‘? =1 Xij (Zilj (y)+

A (y)) into (5.3), which is legal, and then combining the resulting equation with (5.4),
we arrive at the equality

3

1.(X,X) = /y { o) + ot = x() [D(y. 3 X5 (27 (9) + AV (w)) ) +X]

+ (o +70u)x(y) + (1 = x(v))) [divy(i Xy (Z7 () + A () ) + X[ 1} Xdy.

(5.5)

On the strength of the representations (4.12), (4.13), and (5.2), the right-hand side of
(5.5) coincides with (A7 : X) : X. Hence (A" : X) : X > 0 for any symmetric matrix
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X for all ¥ > 0. In turn, the demand of symmetry of X can be easily removed in this
inequality due to the symmetry properties of the tensors Ay, A, Ay(t), and, consequently,
A7. Hence non-negativeness of the tensor A” is proved.

The strict positive definiteness of A is justified by the contradiction method, following
the lines of [9, lemma 8]. Suppose that for some nontrivial matrix X, i.e., X # 0, the
equality (A : X) : X = 0 take place. Hence I,(X,X) = 0 and due to (5.4) one has

3

D(y. Y Xu(27 (@) + AV (y)) = X, ye. (5.6)

1,7=1

This equality immediately implies that the sum 37 =1 Xij (Z7(y) + A (y)) is linear,
that is, has the form ¢q + Zk | €Yk, Where ¢ (k= 0,1,2,3) are some constant vectors.
However, on the strength of 1-periodicity of Z; 7 and A” this is possible only if ¢, = 0
for £ = 1,2,3. From this and equality (5.6) it follows that X = 0, which contradicts the
initial assumption X # 0. Thus, there exists a constant ¢(y) > 0 such that (AY : X) :
X > ¢(7)|X]? for all 3 x 3-matrices X. The strict positive definiteness of A" for v > 0 is
proved.

3. The proof is similar to the proof of item 2 immediately above. It only worth to
notice that the connectivity of Jy and Ey is used in the justification of the strict positive
definiteness of A just like the connectivity of Vs and F, was used above in the justification
of the strict positive definiteness of A7.

4. By the direct substitution we verify that whenever 0) N9Y; = 0, the solution Z Zij
of problem (4.5) is linear in )y and satisfies the equality

a,D(y, Zij) + (a,,divyZij)]I + aw]]ij +a,0,;1=0, yel; (i,j=1,2,3).

Combining this equality with (4.12) we immediately deduce that Ay = 0.

The proof of the strict positive definiteness of A; is similar to the proofs in items 2
and 3.

5. Consider

3

LY D (@) + (1= x()) (Vogi(y) + )6 (V91 (y) + €)i),,
= <(X(y)%f = X)) (S (Vi )&)2> >0 VEeR. (5.7)
=1 %

Substituting the test function ¢ = gi(y)&&; into (4.10a), which is legal, summing over i
and j, and using representation (4.17) we arrive at the equality Iy = E¢& - £&. Combining
it with estimate (5.7) we conclude that E, is nonnegative definite. The strict positive
definiteness of Eq follows from the connectivity of the set E, due to the arguments, similar
to those from the justification of the assertion in item 2.
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Next consider

i <{x(y) 5V, 95 (y) — cuse’]
+ (1= x(y) [#V,05(y) — ane’]} - (5V,05(y) — asre’ +7V,95(y) — apse’) >y
_ —<{X(y)(%fvyg%(y) —agge’) + (1= x(y)) (4V,05(y) — apse’) } - (ags + a98)6i>y
= (agy +aps) EY (1,5 =1,2,3). (5.8)

In this chain of two equalities the former holds true due to (4.11a) and the latter is valid
on the strength of (4.18). On the other hand,

3 3

Sorveg =" <X(y)(%fvy9§(y) —agre’ )&+ (32 V95 (y) — CV9f€2’)§i>y

ij=1 i.j=1

+) <(1 — X)) 56V, 93(y) — cps€”)&; - (5V g5 (y) — aasei)§i>y

ij=1

2 (W) (Va3 y) — anse))g - (V0 (y) — ane)s )

i,j=1

+ ) <(1 —X(¥)) (54 V,95(y) — ape’)E; - (3,V,95(y) — aefei)§i>y

ij=1
YLt L+ L+ YEERS (59)
Here clearly Iy + I3 > 0, and interchanging indices 7 and j within I, we also have

3

L+Ts=) <(%fvy9§ — agre’) - (5 V, 95 — aesej)§i5j>

ij=1 Y

3
= Z %f%8<vy9§€i : Vyg%fj>y + 04030495‘&2

ij=1

i gl : 89%
— Z Oégs%f&fj @ - Z O‘Qf%sngj %
J y ¢ A%

i,j=1 5=1
de
S Ts + cgsoips €2 — I — Is. (5.10)

It is easy to see that Iy > 0 and that I; = Iz = 0 due to 1-periodicity of ¢gi(y) and the

integration by parts formula. Hence, combining expressions (5.8)—(5.10), we establish the

estimate o
Ef- &> 1" |¢ VEER’
Qg + Qs
and thus conclude that [E; is strictly positively definite.
The strict positive definiteness of Cq is proved similarly.

Theorem 2 is proved. O
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