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Abstract

The linearized model of joint motion of an elastic heat-conducting porous skele-
ton and a viscous compressible thermofluid filling the pore space is considered. It
is assumed that the pore space has a periodic geometry and the model incorporates
a small parameter, which is the ratio of micro- and macroscopic length scales. A
homogenization procedure, i.e., a limiting transition as the small parameter tends
to zero, is fulfilled. It is established as the result, that the limiting distributions
of displacements and temperature solve a well-posed homogenized linear model of
thermoviscoelasticity with shape and heat memory. Moreover, the coefficients of
the homogenized model are uniquely defined by data given for microstructure. The
homogenization procedure is fulfilled fully rigorously by means of the two-scale con-
vergence method.

Introduction

We consider the linearized model of thermoporoelasticity, namely, the linear dynamical
model of joint motion of an elastic porous ground and a viscous compressible fluid, entirely
filling the pore space, with taking into account heat-conduction phenomena. Equations
of thermoporoelasticity are in focus of specialists in various fields of mechanics because
of many reasons: for example [4, 15], the enhanced recovery of gas, oil and geothermally
heated water depends upon flow in porous strata; underwater acoustics involves propa-
gation in the water-saturated bottom of the ocean; liquid waste disposed of underground
seeps into pores; pore fluids in the ground are believed to play a role in the triggering
earthquakes.

The major difficulty in studying thermoporoelasticity is due to the following fact. The
thermomechanical properties of the solid skeleton and the porous fluid are very different,
and at the same time pore diameters are very small comparing to the size of the en-
tire porous body. This implies that, whenever domains occupied by the solid and liquid
phases are distinguished in analysis, i.e., description of the thermomechanical system is
fulfilled using microscale, the corresponding mathematical models exhibit rapidly oscilla-
tory regimes. Therefore analysis of these models is likely to be ill-fated in applications,
especially in numerical simulations, because amount of calculations may be impossible
even for supercomputers.

However, it is well-known (see, for example, [6]) that on a length scale much bigger
than diameters of single pores, in other words, on macroscale, porous media have stable
physical properties (compressibility, heat-conductivity, viscosity, etc.), which are called
average or effective characteristics of media and which are, in general, different from
the corresponding characteristics of the distinct phases. Thus there arises the problem
to evaluate effective characteristics and derive effective macroscopic equations, starting
from data given for heterogeneous microstructure. This is called a homogenization prob-
lem. It consists of carrying-out and justification of a limiting transition in equations
of microstructure, as the small parameter (say, ε) – ratio of characteristic micro- and
macroscale lengthes – tends to zero.
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The main aim of the present work is to solve the homogenization problem for the model
of linear thermoporoelasticity under consideration in a mathematically rigorous way, un-
der assumptions that the porous ground has a connected periodic geometric structure
and that the physical characteristics of each phase (viscosity, elasticity, heat-conductivity,
heat-capacity coefficients, etc) do not depend on ε. We fulfill and rigorously justify the
homogenization procedure by means of the two-scale convergence method. As the result,
we construct a well-posed model of linear thermoviscoelasticity with shape and heat mem-
ory effects. Moreover, all coefficients in the equations of the homogenized model, in other
words, effective coefficients, are defined uniquely starting from data give for microstruc-
ture. This study is somewhat close to the work [9], devoted to application of the two-scale
convergence method to homogenization of poroelasticity without thermal effects, and may
be regarded as its continuation in the case when thermal conductivity is essential.

The rest of the paper is organized as follows. In Sec. 1 we give the description of
the heterogeneous microstructure, which incorporates a small parameter ε > 0 and is our
starting point. We recall the existence and uniqueness theorem for this model and state
the uniform in ε bounds on its solutions. In Secs. 2.1–2.2 the main results of the paper
are formulated as theorems 1 and 2 and the statement of averaged problem B. In Sec 2.3
the conclusions about physical sense and mathematical well-posedness of problem B are
made. In Secs. 3–4 theorem 1 is proved and the homogenized model, i.e., statement of
problem B, is constructed. Sec. 5 is devoted to justification of theorem 2 and ends the
paper.

1. Heterogeneous model of linear thermoporoelasticity on microscale

According to the fundamentals of continuum mechanics [18, ch. I], the joint mo-
tion of a heat-conducting elastic porous body and a viscous thermofluid is described by
the mass, linear momentum, and energy balance equations, the first and second laws of
thermodynamics in each phase, individual state equations, determining thermomechan-
ical behavior in each phase, and certain conditions on solid–liquid interface. Assuming
a priori, that perturbations of the considered thermomechanical system are small about
some rest state, applying in this view the classical linearization formalism [8, §8.1] to the
equations of the model, passing to the proper dimensionless variables, and supplementing
geometry of the porous body with connectivity and periodicity properties, we arrive even-
tually at the closed system of linear thermoporoelasticity equations. The initial-boundary
value problem for this system is formulated below and is considered further throughout
the paper.

Problem A. (Model of linear thermoporoelasticity on the microscale.)
In the space-time prism Q = Ω× (0, T ), where T is a positive constant and Ω is an open
unit cube in R3, i.e., Ω = (0, 1)3, divided into two disjoint open sets Ωε

f and Ωε
s and the

boundary Γε = Ω̄ε
f ∩ Ω̄ε

s between them, find a displacement field wε = wε(x, t) and a
temperature distribution θε = θε(x, t), satisfying the equations

ατρf
∂2wε

∂t2
− divx

{
αµD

(
x,

∂wε

∂t

)
+

(
αpdivxw

ε + ανdivx
∂wε

∂t
− αθfθ

ε
)
I
}

= αF ρfF ,

(x, t) ∈ Ωε
f × (0, T ), (1.1a)

cpf
∂θε

∂t
= divx(κf∇xθ

ε)− αθfdivx
∂wε

∂t
+ Ψε

f , (x, t) ∈ Ωε
f × (0, T ), (1.1b)

2



ατρs
∂2wε

∂t2
− divx

{
αλD(x, wε) + (αηdivxw

ε − αθsθ
ε)I

}
= αF ρsF , (x, t) ∈ Ωε

s × (0, T ),

(1.1c)

cps
∂θε

∂t
= divx(κs∇xθ

ε)− αθsdivx
∂wε

∂t
+ Ψε

s, (x, t) ∈ Ωε
s × (0, T ), (1.1d)

the relations on the interface Γε

θε
(s)(x0, t) = θε

(f)(x0, t), wε
(s)(x0, t) = wε

(f)(x0, t), x0 ∈ Γε, t ≥ 0, (1.1e)

{
αλD(x, wε

(s)) + (αηdivxw
ε
(s) − αθsθ

ε
(s))I

} · nε =
{

αµD
(
x,

∂wε
(f)

∂t

)
+

(
αpdivxw

ε
(f) + ανdivx

∂wε
(f)

∂t
− αθfθ

ε
(f)

)
I
}
· nε, x0 ∈ Γε, t ≥ 0,

(1.1f)

κs∇xθ
ε
(s) · nε = κf∇xθ

ε
(f) · nε, x0 ∈ Γε, t ≥ 0, (1.1g)

initial data

wε|t=0 = wε
0,

∂wε

∂t

∣∣∣
t=0

= vε
0, θε|t=0 = θε

0, x ∈ Ω, (1.1h)

and the homogeneous boundary conditions on ∂Ω:

wε = 0, θε = 0, x ∈ ∂Ω, t ≥ 0. (1.1i)

Geometry of the domains Ωε
f and Ωε

s is given and depends on a small parameter ε > 0,
which is the ratio of the characteristic lengthes l0 and L0 on the micro- and macroscales,
respectively. Since Ω is the unit cube, we clearly have l0 = ε and L0 = 1. The formal
description of the geometry of the porous structure is given similarly to [9] as follows.
Firstly, a structure inside the unit pattern periodicity cell Y = (0, 1)3 is postulated: we
assume that Ys, the solid part, is some open subset of Y , and Yf , the liquid part, is
the complement of the closure of Ys in Y , i.e., Yf = Y \ Ȳs. Secondly, the periodic
repetition of Ys over the whole space R3 is constructed and it is set that Yk

s = Ys + k,
k ∈ Z3. Evidently, that thus obtained set Es =

⋃
k∈Z3 Yk

s and the complement of its
closure Ef = R3 \ Ēs both are open sets in R3. The following demand are imposed on
geometry of Ys and Es:

• Ys is a connected set of strictly positive measure with a Lipschitz boundary and Yf

has strictly positive measure in Y as well.

• Es and Ef are open sets in R3 with a Lipschitz interface between them; Es and Ef

are locally situated on one side of their boundary; Es is connected.

Basing on this construction, introduce a regular mesh of size ε, covering Ω, each cell
being a cube Yε

i with an edge length equal to ε. For simplicity always assume that 1/ε
is an integer positive. Each cube Yε

i , i = 1, 2, 3, . . . 1/ε3 is homeomorphic to Y by linear
homeomorphism Πε

i , being composed of a 1/ε-fold compression and translation. Now
define Yε

si = Πε
i (Ys), Yε

fi = Πε
i (Yf ), and, finally,

Ωε
s =

⋃

1≤k≤1/ε3

Yε
sk, Ωε

f =
⋃

1≤k≤1/ε3

Yε
fk, Γε = Ω̄ε

s ∩ Ω̄ε
f .
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Clearly, Ωε
f = εEf ∩ Ω and Ωε

s = εEs ∩ Ω.
The domains Ωε

f and Ωε
s are occupied by a viscous compressible fluid and an elastic

solid body, respectively. Equation (1.1a) is a system of three scalar Stokes equations of
fluid dynamics, equation (1.1c) is a system of three scalar Lamé’s equations of elasticity,
and (1.1b) and (1.1d) are the heat equations in the liquid and solid domains, respectively.
Relations (1.1e)–(1.1g) are the continuity equations on the interface Γε for the tempera-
ture, displacement, and the normal stresses and heat fluxes, respectively. In (1.1a) and
(1.1c) and further in the paper by D(x, ϕ) we denote the symmetric part of the gradient of
some enough regular vector-function ϕ(x): Dij(x, ϕ) = (1/2)(∂xi

ϕj +∂xj
ϕi), i, j = 1, 2, 3.

The rest of the notation for differential operators in the paper is standard. By I we de-
note the identical transformation in R3, i.e., I = (δij), where δij is Kronecker’s delta. In
(1.1e)–(1.1g) the following notation for values on the interface Γε is used: for any x0 ∈ Γε

and for any function ϕε(x), continuous inside Ωε
s and inside Ωε

f , set

ϕε
(s)(x0) = lim

x→ x0
x ∈ Ωε

s

ϕε(x), ϕε
(f)(x0) = lim

x→ x0
x ∈ Ωε

f

ϕε(x).

Vector nε(x0) is the unit normal to Γε at a point x0, pointing into Ωε
f .

Constant positive dimensionless coefficients ατ , αµ, αλ, αp, αη, αν , αθf , αθs, αF , κf ,
κs, ρf , ρs, cpf , cps do not depend on ε. Along with dimensionless functions Ψε

s(x, t),
Ψε

f (x, t), and a vector-function F (x, t), they are given and relate to the dimensional
physical characteristics of the problem via the following identities:

αν =
1

p0τ0

(
ν − 2

3
µ
)
, αµ =

2µ

p0τ0

, αλ =
2λ

p0

, αp =
K

p0

, αF =
γ0gL0

c2
0

,

αη =
1

p0

(
η − 2

3
λ
)
, ατ =

γ0L
2
0

c2
0τ

2
0

, αθs =
γsηϑ0

p0

, αθf =
γfKϑ0

p0

, F = F ′/g,

κf =
τ0ϑ0

L2
0p0

κ′f , κs =
τ0ϑ0

L2
0p0

κ′s, ρf =
ρ′f
ρ0

, Ψε
s =

τ0

p0

Ψ′
sε,

ρs =
ρ′s
ρ0

, cpf =
ϑ0

p0

c′pf , cps =
ϑ0

p0

c′ps, Ψε
f =

τ0

p0

Ψ′
fε.

Here L0 = 1 is the characteristic size of Ω; τ0 is a characteristic duration of physical
processes; g is the gravity acceleration; p0 is the atmosphere pressure; ρ0, c0, and γ0 =
7/5 are respective mean density, speed of sound, and polytropic exponent in air at the
temperature 273 and at the atmosphere pressure; ϑ0 is the temperature difference between
the boiling- and freezing-points of water at the atmosphere pressure. Coefficients µ,
ν, K, ρ′f , γf , κ′f , and c′pf in the fluid phase are respective shear and bulk viscosities,
hydrostatic compression modulus, mean density, heat extension, heat conductivity, and
specific heat capacity at constant pressure. Coefficients λ, η, ρ′s, γs, κ′s, and c′ps in the solid
phase are respective shear and bulk elasticity moduli, mean density, heat extension, heat
conductivity, and specific heat capacity at constant pressure. These physical dimensional
characteristics of the fluid and the solid are constant and correspond to the rest state, in
the neighborhood of which the linearization procedure for the basic nonlinear model was
fulfilled. Finally, F ′ is a density of distributed mass forces and Ψ′

fε and Ψ′
sε are volumetric

densities of external heat application in the fluid and the solid phases, respectively.
Now let us introduce some notation and then formulate a definition of generalized

solution to problem A. By χ and χε denote the indicator functions of Ef in R3 and of Ωε
f
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in Ω, respectively:

χ(x) =

{
1 if x ∈ Ef ,
0 if x ∈ R3 \ Ef ,

χε(x) =

{
1 if x ∈ Ωε

f ,
0 if x ∈ Ω \ Ωε

f .

In view of the structures of the sets Ef and Ωε
f it is clear that

χε(x) = χ
(x

ε

)
, x ∈ Ω,

and that χ is 1-periodic in R3. Set

ρε = χερf + (1− χε)ρs, αε
θ = χεαθf + (1− χε)αθs, cε

p = χεcpf + (1− χε)cps,

κε = χεκf + (1− χε)κs, Ψε = χεΨε
f + (1− χε)Ψε

s.

Definition 1. A pair of functions (wε, θε) is called a generalized solution of problem A,
if it satisfies the regularity demands

wε ∈ W 1
2 (Q), χεD

(
x,

∂wε

∂t

)
∈ L2(Q), θε ∈ L2(0, T ; W 1

2 (Ω)), (1.2)

the boundary conditions (1.1i) and initial condition wε|t=0 = wε
0 in the trace sense, and

the integral equalities

∫

Q

(
ατρ

ε ∂wε

∂t
· ∂ϕ

∂t
−

{
χε

[
αµD

(
x,

∂wε

∂t

)
+

(
αpdivxw

ε + ανdivx
∂wε

∂t

)
I
]

+ (1− χε)
[
αλD(x, wε) + (αηdivxw

ε)I
]
− αε

θθ
εI

}
: ∇xϕ + αF ρεF ·ϕ

)
dxdt

+

∫

Ω

ατρ
εvε

0 ·ϕ(x, 0)dx = 0, (1.3)

∫

Q

(
cε
pθ

ε ∂ψ

∂t
− κε∇xθ

ε · ∇xψ + αε
θ(divxw

ε)
∂ψ

∂t
+ Ψεψ

)
dxdt

+

∫

Ω

(
cε
pθ

ε
0 + αε

θdivxw
ε
0

)
ψ(x, 0)dx = 0 (1.4)

for all smooth test vector-functions ϕ(x, t) and scalar functions ψ(x, t) vanishing near
∂Ω and in a neighborhood of t = T .

Remark 1. On the strength of regularity properties (1.2) and the well-known facts from
the theory of Sobolev space W 1

2 (Ω), a generalized solution of problem A (if any) necessarily
satisfies conditions (1.1e) on Γε in the trace sense. In view of condition (1.1e), after
integration by parts, integral equalities (1.3) and (1.4) yield equations (1.1a) and (1.1b)
in Ωε

f × (0, T ) and equations (1.1c) and (1.1d) in Ωε
s × (0, T ) in the distributions sense,

and initial relations wε
t |t=0 = vε

0 and θε|t=0 = θε
0, and conditions (1.1f) (1.1g) on Γε in

the trace sense. Thus the above introduced notion of generalized solutions is consistent
with the formulation of problem A.

The following statements of the well-posedness of problem A and the bounds on so-
lutions are justified by the classical methods in the theory of generalized solutions of the
problems in mathematical physics [11]. An extended proof can be found in [12].
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Proposition 1. For all fixed ε > 0, for any given data wε
0 ∈

◦
W 1

2 (Ω), vε
0, θ

ε
0 ∈ L2(Ω),

F ε, Ψε ∈ L2(Q) problem A has a unique generalized solution (wε, θε) in the sense of
definition 1. This solution admits the energy estimate

ess sup
t∈[0,τ ]

(
‖wε(t)‖2

2,Ω + ‖∇xw
ε(t)‖2

2,Ω + ‖∂tw
ε(t)‖2

2,Ω

)
+ ‖χεD(x, ∂tw

ε)‖2
2,Ω×(0,τ)

+ ess sup
t∈[0,τ ]

(
‖θε(t)‖2

2,Ω + ‖∇xθ
ε(t)‖2

2,Ω

)

≤ C0 ·
(‖F ‖2

2,Ω×(0,τ) + ‖Ψε‖2
2,Ω×(0,τ) + ‖wε

0‖2
2,Ω + ‖∇xw

ε
0‖2

2,Ω + ‖vε
0‖2

2,Ω + ‖θε
0‖2

2,Ω

)

∀ τ ∈ (0, T ], (1.5)

where C0 = C0(T, ατ , αµ, αλ, αp, αη, αν , αθf , αθs, αF ,κf ,κs, ρf , ρs, cpf , cps) is a constant in-
dependent of ε.

2. Homogeneous macroscopic model of effective thermoviscoelasticity:
formulation of the main results

Theorems 1 and 2 and the statement of averaged problem B below in Secs. 2.1–2.2 are
the main results of the article. In Sec. 2.3 the conclusions about the physical sense and
the mathematical well-posedness of problem B follow immediately from the assertions of
theorems 1 and 2.

2.1. Convergence of the homogenization process. Averaged model.

Theorem 1. Let functions wε
0, vε

0, θε
0, F , and Ψε be given and satisfy the assumptions

of proposition 1 and the limiting relations

wε
0 → w∗

0 weakly in W 1
2 (Ω), Ψε → Ψ̄ weakly in L2(Q), (2.1)

vε
0 → V 0(x, y), θε

0 → Θ0(x,y) in the two-scale sense (2.2)

for ε ↘ 0 with some functions w0 ∈
◦

W 1
2 (Ω), Ψ̄ ∈ L2(Q), V 0, Θ0 ∈ L2(Ω×Y). Let a pair

of functions (wε, θε) be the generalized solution of problem A corresponding to the given
functions wε

0, vε
0, θε

0, F Ψε for an arbitrary fixed ε > 0 such that ε−1 ∈ N.
Then, as ε ↘ 0 (ε−1 ∈ N), the sequence (wε, θε) weakly in W 1

2 (Q)× L2(0, T ; W 1
2 (Ω))

tends to a pair of functions (w∗, θ∗), which is a generalized solution of problem B, stated
below.

In the statement of problem B, the constant fourth-rank tensors A0 and A1, the con-
stant 3 × 3-matrices C0, E0, and E1, the function t 7→ A2(t) with values in the space of
fourth-rank tensors, and the function t 7→ C1(t) with values in the space of 3× 3-matrices
depend only on the geometry of domains Yf and Ys and on the quantities αµ, αp, αν, αλ,
αη, αθf , αθs, κf , and κs, and are uniquely defined by equations (4.5)–(4.18) (see in Sec.
4).

The demand of two-scale convergence, imposed in limiting relation (2.2), is formulated
explicitly in Sec. 3.
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Problem B. In the space-time prism Q = Ω× (0, T ), where T = const > 0 and Ω =
(0, 1)3, find a displacement field w = w(x, t) and a temperature distribution θ = θ(x, t),
satisfying the equations

ατ ρ̄
∂2w

∂t2
− divx

{
A0 : D

(
x,

∂w

∂t

)
+ A1 : D(x, w)− C0θ

+

∫ t

0

A2(t− τ) : D(x, w(τ))dτ −
∫ t

0

C1(t− τ)θ(τ)dτ
}

= αF ρ̄F , (x, t) ∈ Q, (2.3)

ατ c̄p
∂θ

∂t
− divx

{
E0∇xθ − E1

∂w

∂t

}
= Ψ̄, (x, t) ∈ Q, (2.4)

initial data

w|t=0 = w∗
0, x ∈ Ω, (2.5)

(∂w/∂t)|t=0 = v∗0
def
= (1/ρ̄)〈(χρf + (1− χ)ρs)V 0〉Y , x ∈ Ω, (2.6)

θ|t=0 = θ∗0
def
= (1/c̄p)〈(χcpf + (1− χ)cps)Θ0〉Y , x ∈ Ω (2.7)

and homogeneous boundary conditions

w = 0, θ = 0, x ∈ ∂Ω, t ≥ 0. (2.8)

Tensors A0, A1, and A2(t), and matrices C0, C1(t), E0, and E1 are referred to as given
in the statement of problem B. From the assertion of theorem 1 it is clear that they are
defined only by the data given for the microstructure.

In (2.5) and further in the paper the standard notation for mean value over the
period Y for any 1-periodic in y integrable function φ(x, t, y) is used: 〈φ(x, t, y)〉Y =∫

Y
φ(x, t, y)dy. In particular, in (2.3) and (2.4) by ρ̄ and c̄p we denote the mean density

and heat capacity, respectively: ρ̄ = |Yf |ρf + |Ys|ρs and c̄p = |Yf |cpf + |Ys|cps, where
|Yf | = 〈χ〉Y and |Ys| = 〈1− χ〉Y .

As usually, for any fourth-rank tensor A∗ and 3×3-matrices B∗ and C∗ by A∗ : B∗ and
(A∗ : B∗) : C∗ we denote inner tensor products in R3×3 and R, respectively: (A∗ : B∗)kl =∑3

i,j=1 Aijkl
∗ B∗ij (k, l = 1, 2, 3), (A∗ : B∗) : C∗ =

∑3
i,j,k,l=1 Aijkl

∗ B∗ijC∗kl.

Definition 2. A pair of functions (w, θ) is called a generalized solution of problem B,
if it satisfies the regularity conditions w ∈ W 1

2 (Q) and θ ∈ L2(0, T ; W 1
2 (Ω)), boundary

conditions (2.5) and (2.8) in the trace sense, and integral equalities

∫

Q

{
ατ ρ̄

∂w

∂t
· ∂ϕ

∂t
−

[
A0 : D

(
x,

∂w

∂t

)
+ A1 : D(x, w)− C0θ

+

∫ t

0

A2(t− τ) : D(x, w(τ))dτ −
∫ t

0

C1(t− τ)θ(τ)dτ
]

: ∇xϕ + αF ρ̄F ·ϕ
}

dxdt

+

∫

Ω

ατ ρ̄v∗0(x) ·ϕ(x, 0)dx = 0, (2.9)

∫

Q

{
ατ c̄pθ

∂ψ

∂t
−

[
E0∇xθ−E1

∂w

∂t

]
·∇xψ +Ψ̄ψ

}
dxdt+

∫

Ω

ατ c̄pθ
∗
0(x)ψ(x, 0)dx = 0 (2.10)

for all smooth test vector-functions ϕ(x, t) and scalar functions ψ(x, t) vanishing near
∂Ω and in a neighborhood of t = T .
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2.2. Properties of the effective coefficients.

Theorem 2. 1. The tensors A0, A1, A2(t), and the matrices C0, C1(t), E0, and E1 are
symmetric, i.e., their components satisfy the equalities

Aijkl
r = Ajikl

r = Ajilk
r = Aklij

r (r = 0, 1, 2), C ij
r = Cji

r , Eij
r = Eji

r (r = 0, 1). (2.11)

2. The fourth-rank tensor Aγ def
= γA0 + A1 + Â2(γ) and the 3 × 3-matrix Cγ def

=
C0 + Ĉ1(γ) are strictly positively defined for γ > 0.

3. If the both sets Yf and Ef are connected then A0 is strictly positively defined.
4. If the set ∂Y ∩ ∂Yf is empty, in other words, the porous space Ωε

f consists only of
trapped pores, then A0 is zero tensor and A1 is strictly positively defined.

5. The matrices E0, E1, and C0 are strictly positively defined.

In item 2 of the theorem by Â2(γ) and Ĉ1(γ) the respective Laplace transforms of
A2(t) and C1(t) are denoted, and at the same time it is assumed that A2(t) = 0 and
C1(t) = 0 for t > 0. Recall that the Laplace transform of an arbitrary locally integrable
and not fast-increasing on the semi-axis (0,∞) function ϕ(t) is defined by the formula

ϕ̂(γ) = L[ϕ](γ) =

∫ ∞

0

ϕ(t)e−γtdt, γ > 0.

2.3. On physical significance and mathematical well-posedness of problem
B. In view of the obtained in theorem 2 properties of symmetry and positive definiteness
for the tensors and matrices of the effective coefficients, problem B is identified as an
initial-boundary value problem for a model of linear thermoviscoelasticity with memory
of shape and heat, except for the case of the trapped pores (see item 4 of the theorem),
in which the homogenized model takes the form of a model of linear thermoelasticity.

Comparing with the well-known formulations in the linear theory of thermoviscoelas-
ticity (see., for example, [6, ch. 4, 9] and [19, ch. 6]), we conclude that A0 is the effective
viscosity tensor of the averaged medium, A1 is the effective instantaneous elasticity tensor,
C0 is the matrix of effective heat extension, E0 is the matrix of effective heat conductivity,
E1 is the matrix of effective coefficients characterizing irreversible heat generation due to
viscosity friction, and A2(t) and C1(t) are the relaxation functions determining influence
of thermomechanical history of the medium during the period (0, t) on the current state
at the moment t.

Following [3, 5], we may notice that in the case, when the pore space is connected
(see item 3 in theorem 2), the fluid viscosity terms dominate the solid stress terms.
Such a thermomechanical system can be compared to an unconsolidated, saturated heat-
conducting marine sediment. Such a sediment possesses low skeletal rigidity. Nevertheless,
such a medium possesses a dissipative rigidity that is capable of supporting shear. Quite
the contrary, in view of item 4 of the theorem, in the case, when all pores are trapped,
the viscosity phenomena become subtle in effective macroscopic behavior of the medium
and the solid stress terms dominate.

On the strength of theorem 1, problem B is solvable in the sense of definition 2, pro-
vided with the condition that the coefficients of equations (2.3) and (2.4) admit certain
relations with data of the microstructure, since some solution of problem B can be con-
structed as a limit of solutions of problem A, as ε ↘ 0. At the same time, it should
be noticed that, if we assume that the coefficients of equations (2.3) and (2.4) a priori
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satisfy the properties in assertions of theorem 2, then the conclusion about well-posedness
of problem B is correct independently of whether problem B is connected with the mi-
crostructure, or not. More precisely, the following proposition holds true.

Corollary of theorem 2. Assume that the tensors and matrices of coefficients of equa-
tions (2.3) and (2.4) have the properties, stated in items 1, 2, and 5 of theorem 2, and
satisfy the inclusions Aijkl

2 , C ij
1 ∈ L2(0, T ) (i, j, k, l = 1, 2, 3). Let all of them be, in prin-

ciple, irrelevant to the data given for problem A.

Then for any given initial distributions w∗
0 ∈

◦
W 1

2 (Ω), v∗0, θ
∗
0 ∈ L2(Ω) and right-hand

sides F , Ψ̄ ∈ L2(Q) of equations (2.3) and (2.4), there exists a unique generalized solution
of problem B, in the sense of definition 2.

Proof of this corollary is by the quite standard considerations, therefore we
confine ourselves to a brief scheme of the proof.

On the strength of the well-known properties of Laplace’s transform (see, for example,
[2, ch. 4], [14, ch. 3]), applying formally Laplace’s transform to equations (2.3) and (2.4)
and taking into account the given initial data we arrive at the Dirichlet problem for the
system of two second-order partial differential equations as follows:

divx

{Aγ : D(x, ŵγ)− Cγ θ̂γ
}− ατ ρ̄γ2ŵγ =

divx

{
A0 : D(x, w∗

0)
}− ρ̄(ατγv∗0 + ατw

∗
0 + αF F̂

γ
), x ∈ Ω, (2.12a)

divx

{
E0∇xθ̂

γ − γE1ŵ
γ
}− ατ c̄pγθ̂γ = −divx

{
E1w

∗
0

}− ατ c̄pθ
∗
0 − Ψ̂γ, x ∈ Ω, (2.12b)

ŵγ = 0, θ̂γ = 0, x ∈ ∂Ω. (2.12c)

Variable γ > 0 enters this problem as a parameter.
On the strength of the strict positive definiteness of tensor Aγ and matrix E0, equation

(2.12a) is uniformly elliptic with respect to the unknown function ŵγ, and equation
(2.12b) is uniformly elliptic with respect to the unknown function θ̂γ. Due to this and the
strict positive definiteness and symmetry of matrices E1 and Cγ, it is true that problem

(2.12) has exactly one generalized solution (ŵγ, θ̂γ) ∈
◦

W 1
2 (Ω) for any given w∗

0 ∈
◦

W 1
2 (Ω),

F̂
γ
, Ψ̂γ, θ∗0,v

∗
0 ∈ L2(Ω), for any fixed γ > 0.

Verification of this assertion is fulfilled within the framework of the well-known theory
of generalized solutions to elliptic equations [11, ch. 2]. Indeed, multiply equation (2.12a)
by γE1(Cγ)−1ŵγ and equation (2.12b) by θ̂γ, integrate the obtained equations with respect
to x on Ω, integrate by parts in x in all summands involving operator divx, except for
just one arising from (2.12a) and having the integrand −γE1(Cγ)−1ŵγ · divx(Cγ θ̂γ), sum
up the resulting equations, and fulfill some certain simple algebraic transformations of the
integrands, using the facts that two positive definite and symmetric matrices E1 and Cγ

can be brought to a diagonal form by the same orthogonal transformation (say, Qγ) and
that (Cγ)−1, as well as Cγ, is a symmetric matrix and can be brought to a diagonal form
by the transformation Qγ. These technical procedures, in particular, bring the integrand
−γE1(Cγ)−1ŵγ ·divx(Cγ θ̂γ) to the form −γE1ŵ

γ ·∇xθ̂
γ. The latter integrand cancels with

the similar term arising from equation (2.12b), and, thanks to this, we eventually arrive
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at the energy identity

‖E1/2
0 ∇xθ̂

γ‖2
2,Ω + γατ c̄p‖θ̂γ‖2

2,Ω + γ3ατ ρ̄‖E1/2
1 (Cγ)−1/2ŵγ‖2

2,Ω

+

∫

Ω

(Aγ : D(x,E1/2
1 (Cγ)−1/2ŵγ)

)
: D(x,E1/2

1 (Cγ)−1/2ŵγ)dx

=

∫

Ω

γ
(
A0 : D(x,E1/2

1 (Cγ)−1/2w∗
0)

)
: D(x,E1/2

1 (Cγ)−1/2ŵγ)dx

+

∫

Ω

E1/2
1 (Cγ)−1/2ŵγ · {ρ̄E1/2

1 (Cγ)−1/2(γατv
∗
0 + ατw

∗
0 + αF F̂

γ
)
}
dx

+

∫

Ω

{−(E1w
∗
0) · ∇xθ̂

γ + ατ c̄pθ
∗
0 θ̂

γ + Ψ̂γ θ̂γ
}
dx, γ > 0.

Applying Cauchy’s, Holder’s, and Korn’s [16, ch. 3, §3.2] inequalities and taking into
account strict positive definiteness of tensor Aγ and matrices E0, E1, and (Cγ)−1, from
this identity we derive the energy inequality

cγ
1‖ŵγ‖2

2,Ω + cγ
2‖∇xŵ

γ‖2
2,Ω + cγ

3‖θ̂γ‖2
2,Ω + cγ

4‖∇xθ̂
γ‖2

2,Ω

≤ cγ
5‖w∗

0‖2
2,Ω + cγ

6‖∇xw
∗
0‖2

2,Ω + cγ
7‖θ∗0‖2

2,Ω + cγ
8‖F̂

γ‖2
2,Ω + cγ

9‖Ψ̂γ‖2
2,Ω, γ > 0.

Here all constants cγ
i are nonnegative and depend merely on γ. Moreover, the constants

with indices i = 1, 2, 3, 4 are strictly positive. Relying on this estimate we finish the proof
of the unique solvability of problem (2.12) precisely following the lines of [11, ch. 2, §2,
theorem 2.1, §3].

Finally, applying the inverse Laplace transform in γ to the solution of problem (2.12)
and following the considerations from [11, ch. 3, §4; ch. 4, §7] or from [7] we deduce the
solution of problem B in the form

w(x, t) = L−1[ŵγ] =
1

2πi

∫ γ1+i∞

γ1−i∞
ŵγ(x)eγtdγ,

θ(x, t) = L−1[θ̂γ] =
1

2πi

∫ γ1+i∞

γ1−i∞
θ̂γ(x)eγtdγ.

This solution is unique due to one-to-oneness of L and L−1.

3. Proof of theorem 1 (part I): the two-scale convergence method
and weak and two-scale limits of solutions of problem A

In this section we outline the notion of two-scale convergence and then derive the
system of two-scale averaged equations from equations of problem A with the help of this
notion by a limiting transition as ε ↘ 0. This derivation is the first step in the proof of
theorem 1.

Definition 3. (G. Nguetseng [13].) The sequence {ϕε} ⊂ L2(Q) is said to two-scale
converge to a limit ϕ ∈ L2(Q × Y), if and only if for any 1-periodic in y function σ =
σ(x, t, y) such that σ ∈ L2(Q× Y) one has

lim
ε↘0

∫

Q

ϕε(x, t)σ
(
x, t,

x

ε

)
dxdt =

∫

Q×Y
ϕ(x, t, y)σ(x, t, y)dxdydt.
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Existence and the basic properties of two-scale convergent sequences is established in
the following fundamental theorem [1, 13].

Theorem TS. 1. From each bounded sequence in L2(Q) one can extract a subsequence
which two-scale converges to a limit ϕ ∈ L2(Q× Y).
2. If a sequence in L2(Q) two-scale converges to two functions ϕ1, ϕ2 ∈ L2(Q × Y)
simultaneously, then ϕ1 = ϕ2 a.e. in Q× Y.
3. Let {ϕε} and {∇xϕε} be bounded sequences in L2(Q). Then there exist functions
ϕ ∈ L2(Q) and ψ ∈ L2(Q × Y) and a subsequence {ϕε} such that ψ is 1-periodic in y,
∇yψ ∈ L2(Q × Y), and both {ϕε} and {∇xϕ

ε} two-scale converge to ϕ and ∇xϕ(x, t) +
∇yψ(x, t, y), respectively.

Remark 2. Let σ ∈ L∞(Y), continue σ from Y onto the whole space R3 by periodic
repetition, define σε(x) = σ(x/ε) (x ∈ Ω), and let the sequence {ϕε} ⊂ L2(Q) two-scale
converge to a limit ϕ ∈ L2(Q× Y). Then from definition 3 and theorem TS it is easy to
see that {σεϕε} two-scale converges to the limit σ(y)ϕ(x, t, y).

Now turn to consideration of the limiting transition in the equations of problem A,
as ε ↘ 0 (ε−1 ∈ N). On the strength of proposition 1, the sequences {wε}, {∂tw

ε},
{θε}, {∇xθ

ε}, {χεD(x, ∂tw
ε)} are uniformly bounded in L2(Q). From this, theorem TS,

and remark 2 it follows that there exist a subsequence from {ε > 0 | ε−1 ∈ N} and four

functions {w∗ ∈ W 1
2 (Q), θ∗ ∈ L2(0, T ;

◦
W 1

2 (Ω)), W , Θ ∈ L2(Q× Y)} such that

χ(y)(D(x, ∂tw
∗) + D(y, ∂tW )),∇yW ,∇yΘ ∈ L2(Q× Y);

W , Θ are 1-periodic in y; (3.1)

wε → w∗ weakly in W 1
2 (Q),

θε → θ∗ weakly in L2(0, T ; W 1
2 (Ω)), (3.2)

∇xw
ε → ∇xw

∗(x, t) +∇yW (x, t, y),

∇xθ
ε → ∇xθ

∗(x, t) +∇yΘ(x, t, y),

χεD(x, ∂tw
ε) → χ(y)

(
D(x, ∂tw

∗) + D(y, ∂tW (x, t, y))
)

in the two-scale sense, as ε ↘ 0. (3.3)

Substitute the test functions of the forms

ϕ = ϕ1(x, t) + εϕ2

(
x, t,

x

ε

)
, ψ = ψ1(x, t) + εψ2

(
x, t,

x

ε

)
,

where ϕ1(x, t), ϕ2(x, t, y), ψ1(x, t), and ψ2(x, t, y) are arbitrary smooth functions, van-
ishing near ∂Ω and in a neighborhood of t = T and such that ϕ2 and ψ2 are 1-periodic in
y, into integral equalities (1.3) and (1.4). Now, due to such choice of test functions and
on the strength of relations (2.1), (2.2), (3.2), and (3.3), extracting a proper subsequence
from {ε > 0, ε−1 ∈ N} (if necessary) and passing in integral equalities (1.3) and (1.4)
to the limit as ε ↘ 0, we deduce the system of the averaged two-scale equations, which
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consists of the following four integral equalities:

∫

Q

{
ατ ρ̄

∂w∗

∂t
· ∂ϕ1

∂t
−

[
|Yf |

(
αµD

(
x,

∂w∗

∂t

)
+

(
αpdivxw

∗ + ανdivx
∂w∗

∂t
− αθfθ

∗)I
)

+ |Ys|
(
αλD(x, w∗) + (αηdivxw

∗ − αθsθ
∗)I

)

+
〈
χ(y)

(
αµD

(
y,

∂W (x, t, y)

∂t

)
+

(
αpdivyW (x, t, y) + ανdivy

∂W (x, t, y)

∂t

)
I
)

+ (1− χ(y))
(
αλD(y, W (x, t, y)) + (αηdivyW (x, t, y))I

)〉
Y

]
: ∇xϕ1 + αF ρ̄F ·ϕ1

}
dxdt

+

∫

Ω

ατ

〈
(χ(y)ρf + (1− χ(y))ρs)V 0(x, y)

〉
Y ·ϕ1(x, 0)dx = 0, (3.4)

∫

Q×Y

{
χ(y)

[
αµD

(
x,

∂w∗

∂t

)
+ αµD

(
y,

∂W (x, t, y)

∂t

)

+
(
αpdivxw

∗ + αpdivyW (x, t, y) + ανdivx
∂w∗

∂t
+ ανdivy

∂W (x, t, y)

∂t
− αθfθ

∗)I
]

+ (1− χ(y))
[
αλ(D(x, w∗) + D(y, W (x, t, y)))

+ (αηdivxw
∗ + αηdivyW (x, t, y)− αθsθ

∗)I
]}

: ∇yϕ2(x, t, y)dxdydt = 0, (3.5)

∫

Q

{
ατ c̄pθ

∗∂ψ1

∂t
−

[(|Yf |κf + |Ys|κs

)∇xθ
∗ − (|Yf |αθf + |Ys|αθs

)∂w∗

∂t

+
〈
(χ(y)κf + (1− χ(y))κs)∇yΘ(x, t, y)

〉
Y

]
· ∇xψ1 + Ψ̄ψ1

}
dxdt

+

∫

Ω

ατ

〈
(χ(y)cpf + (1− χ(y))cps)Θ0(x,y)

〉
Yψ1(x, 0)dx = 0, (3.6)

∫

Q×Y

{
χ(y)

[
κf∇xθ

∗ + κf∇yΘ(x, t, y)− αθf
∂w∗

∂t

]

+ (1− χ(y))
[
κs∇xθ

∗ + κs∇yΘ(x, t, y)− αθs
∂w∗

∂t

]}
· ∇yψ2(x, t, y)dxdydt = 0. (3.7)

Due to the sufficient arbitrariness of the functions ϕ1, ϕ2, ψ1, and ψ2, system (3.4)–
(3.7) is closed, because it is equivalent in the distributions sense to the initial-boundary
value problem for the system of eight scalar equations involving eight unknown functions
w∗

i (x, t), Wi(x, t, y) (i = 1, 2, 3), θ∗(x, t), and Θ(x, t, y).
The following assertion holds true.

Proposition 2. For any given w∗|t=0 ∈
◦

W 1
2 (Ω), V 0, Θ0 ∈ L2(Ω×Y), and F , Ψ̄ ∈ L2(Q),

system (3.4)–(3.7) has a unique solution w∗ ∈ W 1
2 (Q), θ∗ ∈ L2(0, T ;

◦
W 1

2 (Ω)), W , Θ ∈
L2(Q× Y). This solution possesses the regularity properties (3.1).

Existence of solutions has been already proved by the limiting transition as ε ↘ 0.
The proof of uniqueness follows the lines of [9, lemma 5].
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4. Proof of theorem 1 (part II): derivation of homogeneous equations (2.3)
and (2.4), structure of effective coefficients

Let us resolve equations (3.5) and (3.7) with respect to the functions W (x, t, y) and
Θ(x, t, y), assuming that w∗ and θ∗ are given. To this end we employ the method of
separation of variables. That is, we seek for solutions W and Θ having the forms

W (x, t, y) =
3∑

i,j=1

(
Dij(x, w(x, t))Zij

1 (y) +

∫ t

0

Dij(x, w∗(x, τ))Zij
2 (y, t− τ)dτ

)

+

∫ t

0

θ∗(x, τ)Z3(y, t− τ)dτ, (4.1)

Θ(x, t, y) =
3∑

i=1

(∂θ∗

∂xi

gi
1(y) +

∂w∗
i

∂t
gi
2(y)

)
, (4.2)

where the vector-functions Zij
1 , Zij

2 , and Z3 and the scalar functions gi
1 and gi

2 are to be
determined. Substituting (4.1) into (3.5) and (4.2) into (3.7) after some rather simple
technical transformations we arrive at the integral equalities

∫

Q×Yf

{
3∑

i,j=1

Dij

(
x,

∂w∗

∂t

)[
αµD(y, Zij

1 ) + (ανdivyZ
ij
1 )I+ αµJij + ανδijI

]
: ∇yϕ2

+
3∑

i,j=1

Dij(x, w∗(x, t))
[
αµD(y, Zij

2 (y, 0)) + (ανdivyZ
ij
2 (y, 0))I

+ αp

(
divyZ

ij
1 (y) + δij

)
I
]

: ∇yϕ2 −
[∫ t

0

3∑
i,j=1

Dij(x, w∗(x, τ))
[
αµD

(
y,

∂Zij
2 (y, t− τ)

∂τ

)

− (
αpdivyZ

ij
2 (y, t− τ)

)
I+

(
ανdivy

∂Zij
2 (y, t− τ)

∂τ

)
I
]
dτ

]
: ∇yϕ2

+ θ∗(x, t)
[
αµD(y, Z3(y, 0)) +

(
ανdivyZ3(y, 0)

)
I− αθfI

]
: ∇yϕ2

−
[∫ t

0

θ∗(x, τ)
[
αµD

(
y,

∂Z3(y, t− τ)

∂τ

)
− (

αpdivyZ3(y, t− τ)
)
I

+
(
ανdivy

∂Z3(y, t− τ)

∂τ

)
I
]
dτ

]
: ∇yϕ2

}
dxdydt

+

∫

Q×Ys

{
3∑

i,j=1

Dij(x, w∗)
[
αλD(y, Zij

1 ) +
(
αηdivyZ

ij
1

)
I+ αλJij + αηδijI

]
: ∇yϕ2

+

[∫ t

0

3∑
i,j=1

Dij(x, w∗(x, τ))
[
αλD(y, Zij

2 (y, t− τ)) +
(
αηdivyZ

ij
2 (y, t− τ)

)
I
]
dτ

]
: ∇yϕ2

+

[∫ t

0

θ∗(x, τ)
[
αλD(y, Z3(y, t− τ)) + (αηdivyZ3(y, t− τ))I

]
dτ

]
: ∇yϕ2

− θ∗(αθsdivyϕ2)

}
dxdydt = 0, (4.3)
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∫

Q×Yf

{
3∑

j=1

∂θ∗

∂xj

(κf∇yg
j
1 + κfe

j) · ∇yψ2 +
3∑

j=1

∂w∗
j

∂t
(κf∇yg

j
2 − αθfe

j) · ∇yψ2

}
dxdydt

+

∫

Q×Ys

{
3∑

j=1

∂θ∗

∂xj

(κs∇yg
j
1+κse

j)·∇yψ2+
3∑

j=1

∂w∗
j

∂t
(κs∇yg

j
2−αθse

j)·∇yψ2

}
dxdydt = 0.

(4.4)

In (4.3) and (4.4) by ej the standard vectors of Cartesian basis in R3 are denoted; Jij def
=

(1/2)(ei ⊗ ej + ej ⊗ ei) is the 3 × 3-matrix, in whose definition the expression ek ⊗ el

stands for the diad of two basis vectors, i.e., (ek ⊗ el)a
def
= ale

k for any a ∈ R3.
From the structure of integral equalities (4.3) and (4.4) it follows that they hold true

independently of all possible solutions w∗ and θ∗ and test functions ϕ2 and ψ2, whenever
we demand that the functions Zij

1 , Zij
2 , Z3, gi

1, and gi
2 solve the following boundary

value problems in the pattern cell Y . (We state these problems using the variational
formulations, like in [9, 17].)

Vector-function Zij
1 (i, j = 1, 2, 3) is determined by the linear system

∫

Yf

(
αµD(y, Zij

1 ) + (ανdivyZ
ij
1 )I+ αµJij + ανδijI

)
: ∇yϕ(y)dy = 0, (4.5a)

∀ϕ ∈ W 1
2 (Y) (ϕ is 1-periodic),

∫

Ys

(
αλD(y, Zij

1 ) + (αηdivyZ
ij
1 )I+ αλJij + αηδijI

)
: ∇yβ(y)dy =

∫

∂Ys\∂Y

(
αλD(y, Zij

1 ) + (αηdivyZ
ij
1 )I+ αλJij + αηδijI

)
n(σy) · β(σy)dσy, (4.5b)

∀β ∈ W 1
2 (Y) (β is 1-periodic),

Zij
1 ∈ W 1

2 (Y)/R, (∂Zij
1 /∂t) ∈ W 1

2 (Yf )/R, Zij
1 : R3 7→ R3 is 1-periodic. (4.5c)

Here by n the unit normal to ∂Ys, inward with respect to Yf , is denoted.
Next the problem for the initial value of the kernel Zij

2 (i, j = 1, 2, 3) is formulated:
∫

Yf

(
αµD(y, Zij

2 (y, 0)) + (ανdivyZ
ij
2 (y, 0))I+ (αpdivyZ

ij
1 (y))I+ αpδijI) : ∇yϕ(y)dy =

−
∫

∂Ys\∂Y

(
αλD(y, Zij

1 ) + (αηdivyZ
ij
1 )I+ αλJij + αηδijI

)
n(σy) ·ϕ(σy)dσy, (4.6a)

∀ϕ ∈ W 1
2 (Yf ) (ϕ is 1-periodic),

Zij
2 (·, 0) ∈ W 1

2 (Yf )/R, Zij
2 (·, 0) : R3 7→ R3 is 1-periodic in y. (4.6b)

In (4.6) the vector-function Zij
1 is assumed given.

The value of the kernel Zij
2 (y, t) (i, j = 1, 2, 3) is determined in Y × (0, T ) by the

system

∫

Yf

{
αµD

(
y,

∂Zij
2 (y, t)

∂t

)
+ (αpdivyZ

ij
2 (y, t))I+

(
ανdivy

∂Zij
2 (y, t)

∂t

)
I
}

: ∇yϕ(y)dy

+

∫

Ys

{
αλD(y, Zij

2 (y, t)) + (αηdivyZ
ij
2 (y, t))I

}
: ∇yϕ(y)dy = 0, (4.7a)
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∀ϕ ∈ W 1
2 (Y) (ϕ is 1-periodic),

Zij
2 (y, 0) is given in Yf by (4.6), (4.7b)

Zij
2 ∈ L∞(0, T ; W 1

2 (Y)/R), (∂Zij
2 /∂t) ∈ L2(0, T ; W 1

2 (Yf )),

Zij
2 : R3 × (0, T ) 7→ R3 is 1-periodic in y. (4.7c)

Analogously we formulate the problems for Z3(y, 0) and Z3(y, t):

∫

Yf

{
αµD(y, Z3(y, 0)) + (ανdivyZ3(y, 0))I− αθfI

}
: ∇yϕ(y)dy −

∫

Ys

αθsdivyϕ(y)dy = 0,

(4.8a)
∀ϕ ∈ W 1

2 (Y) (ϕ is 1-periodic),

Z3(·, 0) ∈ W 1
2 (Yf )/R, Z3(·, 0) : R3 7→ R3 is 1-periodic in y, (4.8b)

and, correspondingly,

Z3(y, t) satisfies the system of (4.7a) and (4.7c), (4.9a)

Z3(y, 0) is given in Yf by (4.8). (4.9b)

Finally, the functions gj
1(y) and gj

2(y) are determined by the problems

∫

Yf

κf

(∇yg
j
1(y) + ej

) · ∇yψ(y)dy +

∫

Ys

κs

(∇yg
j
1(y) + ej

) · ∇yψ(y)dy = 0, (4.10a)

∀ψ ∈ W 1
2 (Y) (ψ is 1-periodic),

gj
1 ∈ W 1

2 (Y)/R, gj
1 : R3 7→ R is 1-periodic, (4.10b)

and
∫

Yf

(
κf∇yg

j
2(y)−αθfe

j
) ·∇yψ(y)dy +

∫

Ys

(
κs∇yg

j
2(y)−αθse

j
) ·∇yψ(y)dy = 0, (4.11a)

∀ψ ∈ W 1
2 (Y), (ψ is 1-periodic),

gj
2 ∈ W 1

2 (Y)/R, gj
2 : R3 7→ R is 1-periodic. (4.11b)

The following proposition implies the demand from the functions Zij
1 , Zij

2 , Z3, gi
1, and

gi
2 to solve the above stated problems makes sense. Hence the two-scale limiting functions

W and Θ admit representations (4.1) and (4.2). Moreover, these representations are
unique.

Proposition 3. Let geometry of the sets Yf and Ys be prescribed and the coefficients αµ,
αp, αν, αλ, αη, αθf , αθs, κf , and κs be given. Then each of problems (4.5)–(4.11) has a
unique solution.
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Proof. Formulations of problems (4.5)–(4.9) are just slight modifications of the state-
ments of the problems in the pattern cell Y from [9, Sec. 2.4]. Accordingly, verification
of the well-posedness of problems (4.5)–(4.9) follows the lines of [9, Sec. 2.4, see lemmas
6, 7, 9, 10] without essential modifications, relying on the well-known facts and methods
in the linear theory of partial differential equations, like the Lax–Milgram lemma, Korn’s
and Poincaré’s inequalities, the Galerkin method, etc. Problems (4.10) and (4.11) are
particular cases of the simplest periodic elliptic problem, whose unique solvability is well-
known and can be found, for example, in [10, ch. 1].

Substituting (4.1) into (3.4) and (4.2) into (3.6), we immediately arrive at the integral
equalities (2.9) and (2.10) for w(x, t) = w∗(x, t) and θ(x, t) = θ∗(x, t) such that the
components of tensors A0, A1, and A2(t) and matrices C0, C1(t), E0, and E1 in these
integral equalities are given by

Aijkl
0 = |Yf |(αµδilδjk + ανδijδkl) + αµ

〈
χ(y)Dkl(y, Zij

1 (y))
〉
Y + ανδkl

〈
χ(y)divyZ

ij
1 (y)

〉
Y ,

(4.12)

Aijkl
1 = |Yf |αpδijδkl + |Ys|(αλδilδkj + αηδijδkl)

+ δkl

〈
χ(y)

(
αpdivyZ

ij
1 (y) + ανdivyZ

ij
2 (y, 0)

)〉
Y

+ αµ

〈
χ(y)Dkl(y, Zij

2 (y, 0))
〉
Y + αηδkl

〈
(1− χ(y))divyZ

ij
1 (y)

〉

+ αλ

〈
(1− χ(y))Dkl(y, Zij

1 (y))
〉
Y , (4.13)

Aijkl
2 (t) = δkl

〈
χ(y)

(
αpdivyZ

ij
2 (y, t) + ανdivy

∂Zij
2 (y, t)

∂t

)〉

Y

+ αµ

〈
χ(y)Dkl

(
y,

∂Zij
2 (y, t)

∂t

)〉

Y
+ αηδkl

〈
χ(y)divyZ

ij
2 (y, t)

〉
Y

+ αλ

〈
χ(y)Dkl(y, Zij

2 (y, t))
〉
Y , (4.14)

C ij
0 = |Yf |αθfδij + |Ys|αθsδij −

〈
χ(y)

(
ανδijdivyZ3(y, 0) + αµDij(y, Z3(y, 0))

)〉
Y , (4.15)

Cij
1 (t) = −δij

〈
χ(y)

(
αpdivyZ3(y, t) + ανdivy

∂Z3(y, t)

∂t

)〉

Y

− αµ

〈
χ(y)Dij

(
y,

∂Z3(y, t)

∂t

)〉

Y
− αηδij

〈
(1− χ(y))divyZ3(y, t)

〉
Y − αλ

〈
(1− χ(y))Dij(y, Z3(y, t))

〉
Y , (4.16)

Eij
0 = |Yf |κfδij + |Ys|κsδij +

〈
(
χ(y)κf + (1− χ(y))κs

)∂gj
1(y)

∂yi

〉

Y
, (4.17)

Eij
1 = |Yf |αθfδij + |Ys|αθsδij −

〈
(
χ(y)κf + (1− χ(y))κs

)∂gj
2(y)

∂yi

〉

Y
, (4.18)
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i, j, k, l = 1, 2, 3.
Since the vector-functions Zij

2 and Z3 satisfy the regularity conditions (4.7c), one has
Aijkl

2 , C ij
1 ∈ L2(0, T ). Due to this and on the strength of the regularity properties of func-

tions w∗ and θ∗ (see in Sec. 3), all the integrals in (2.9) and (2.10) are well-defined. Also
notice that, due to the uniqueness assertion in proposition 2, all convergent subsequences
of {wε, θε} (ε−1 ∈ N) has the same limit {w∗, θ∗}. Hence the entire sequence {wε, θε}
(ε−1 ∈ N) is convergent. Theorem 1 is proved.

5. Proof of theorem 2

1. We prove the assertion of item 1 for the tensor A0 only. For A1, A2, C0, C1, E0,
and E1 the symmetry property is verified by quite analogous considerations.

Inserting ϕ(y) = Zqr
1 (y) as the test function into (4.5a), which is legal, we deduce

Aijqr
01

def
=

〈
χ(y)

[
αµDij(y, Zqr

1 (y)) + ανδijdivyZ
qr
1 (y)

]〉
Y

= −〈
χ(y)

[
αµD(y, Zij

1 (y)) : D(y, Zqr
1 (y)) + ανdivyZ

ij
1 (y) · divyZ

qr
1 (y)

]〉
Y

(i, j, k, l = 1, 2, 3). The right-hand side in this equality stays unchanged, if we interchange
places of the pairs of indices (i, j) and (q, r), and the left-hand side stays unchanged, if we
interchange places of the indices i and j. Combining these two features we conclude that
the tensor A01 = {Aijkl

01 } is symmetric in the sense of the equalities (2.11). In turn, on
the strength of (4.12), we have Aijkl

0 = |Yf |(αµδilδjk +ανδijδkl)+Aklij
01 , which immediately

implies the symmetry property for A0.
2. We outline precisely justification of the assertion in item 2 of the theorem for the

tensor Aγ only. The proof for Cγ is quite analogous and we skip it.
Introduce into consideration the stationary problem arising as the result of application

of Laplace’s transform in t to the integral equality (4.7a) (as usually, we consider that
all the time-dependent functions in (4.7a) are extended by zero to the right outside the
interval (0, T )):

For i, j = 1, 2, 3 find the vector-function Λij
γ = Λij

γ (y) satisfying the system

∫

Yf

{
γαµD

(
y,Λij

γ (y)
)− αµD

(
y, Zij

2 (y, 0)
)

+ (αpdivyΛ
ij
γ (y))I

+γ
(
ανdivyΛ

ij
γ (y)

)
I− (ανdivyZ

ij
2 (y, 0))

}
: D(y, ϕ(y))dy

+

∫

Ys

{
αλD(y,Λij

γ (y)) + (αηdivyΛ
ij
γ (y))I

}
: D(y, ϕ(y))dy = 0,

∀ϕ ∈ W 1
2 (Y), ϕ is 1-periodic, (5.1a)

Λij
γ ∈ W 1

2 (Y)/R, Λij
γ : R3 7→ R3 is 1-periodic. (5.1b)

The variable γ > 0 enters this problem parametrically.
As in the proof of proposition 3 we notice that this problem is a particular case of the

simplest periodic elliptic problem [10, ch. 1] and therefore has a unique solution for all
γ > 0. Clearly, Λij

γ (y) is Laplace’s transform in t of Zij
2 (y, t). Thus the components of
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the tensor Â2(γ) can be written in the form

Âijkl
2 (γ) = δkl

〈
χ(y)

(
αpdivyΛ

ij
γ (y) + γανdivyΛ

ij
γ (y)− ανdivyZ

ij
2 (y, 0)

〉
Y

+ αµ

〈
χ(y)

[
γDkl

(
y,Λij

γ (y)
)− Dkl

(
y, Zij

2 (y, 0)
)]〉

Y
+ αηδkl

〈
χ(y)divyΛ

ij
γ (y)

〉
Y + αλ

〈
χ(y)Dkl(y,Λij

γ (y))
〉
Y . (5.2)

Let X = (Xij) be an arbitrary constant symmetric 3× 3-matrix. Multiply integral equal-
ities (4.5b), (4.6a), and (5.1a) by Xij, and integral equality (4.5a) by γXij, sum up the
resulting equations, assuming that all test functions are the same, in particular, that
β(y) = ϕ(y), and then sum over i and j. As the result we deduce

∫

Yf

{
γαµ

[
D

(
y,

3∑
i,j=1

Xij

(
Zij

1 (y) + Λij
γ (y)

))
+ X

]

+ (γαν + αp)
[
divy

( 3∑
i,j=1

Xij

(
Zij

1 (y) + Λij
γ (y)

))
+ trX

]
I
}

: D(y, ϕ(y))dy

+

∫

Ys

{
αλ

[
D

(
y,

3∑
i,j=1

Xij

(
Zij

1 (y) + Λij
γ (y)

))
+ X

]

+ αη

[
divy

( 3∑
i,j=1

Xij

(
Zij

1 (y) + Λij
γ (y)

))
+ trX

]
I
}

: D(y, ϕ(y))dy = 0, (5.3)

where ϕ ∈ W 1
2 (Y) is an arbitrary 1-periodic function.

Also introduce the quadratic expression

I∗(X,X)
def
=

∫

Y

(
γαµχ(y) + αλ(1− χ(y))

)∣∣∣D
(
y,

3∑
i,j=1

Xij

(
Zij

1 (y) + Λij
γ (y)

))
+ X

∣∣∣
2

dy

+

∫

Y

(
(αp + γαν)χ(y) + αη(1− χ(y))

)∣∣∣divy

( 3∑
i,j=1

Xij

(
Zij

1 (y) + Λij
γ (y)

))
+ trX

∣∣∣
2

dy,

(5.4)

which is evidently nonegative. Substituting the test function ϕ(y) =
∑3

i,j=1 Xij

(
Zij

1 (y)+

Λij
γ (y)

)
into (5.3), which is legal, and then combining the resulting equation with (5.4),

we arrive at the equality

I∗(X,X) =

∫

Y

{(
γαµχ(y) + αλ(1− χ(y))

)[
D

(
y,

3∑
i,j=1

Xij

(
Zij

1 (y) + Λij
γ (y)

))
+ X

]

+
(
(αp + γαν)χ(y) + αη(1− χ(y))

)[
divy

( 3∑
i,j=1

Xij

(
Zij

1 (y) + Λij
γ (y)

))
+ trX

]
I
}

: X dy.

(5.5)

On the strength of the representations (4.12), (4.13), and (5.2), the right-hand side of
(5.5) coincides with (Aγ : X) : X. Hence (Aγ : X) : X ≥ 0 for any symmetric matrix
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X for all γ > 0. In turn, the demand of symmetry of X can be easily removed in this
inequality due to the symmetry properties of the tensors A0, A1, A2(t), and, consequently,
Aγ. Hence non-negativeness of the tensor Aγ is proved.

The strict positive definiteness of Aγ is justified by the contradiction method, following
the lines of [9, lemma 8]. Suppose that for some nontrivial matrix X, i.e., X 6= 0, the
equality (Aγ : X) : X = 0 take place. Hence I∗(X,X) = 0 and due to (5.4) one has

D
(
y,

3∑
i,j=1

Xij

(
Zij

1 (y) + Λij
γ (y)

))
= −X, y ∈ Y . (5.6)

This equality immediately implies that the sum
∑3

i,j=1 Xij

(
Zij

1 (y) + Λij
γ (y)

)
is linear,

that is, has the form c0 +
∑3

k=1 ckyk, where ck (k = 0, 1, 2, 3) are some constant vectors.
However, on the strength of 1-periodicity of Zij

1 and Λij
γ , this is possible only if ck = 0

for k = 1, 2, 3. From this and equality (5.6) it follows that X = 0, which contradicts the
initial assumption X 6= 0. Thus, there exists a constant c(γ) > 0 such that (Aγ : X) :
X ≥ c(γ)|X|2 for all 3 × 3-matrices X. The strict positive definiteness of Aγ for γ > 0 is
proved.

3. The proof is similar to the proof of item 2 immediately above. It only worth to
notice that the connectivity of Yf and Ef is used in the justification of the strict positive
definiteness of A0 just like the connectivity of Ys and Es was used above in the justification
of the strict positive definiteness of Aγ.

4. By the direct substitution we verify that whenever ∂Y ∩ ∂Yf = ∅, the solution Zij
1

of problem (4.5) is linear in Yf and satisfies the equality

αµD(y, Zij
1 ) + (ανdivyZ

ij
1 )I+ αµJij + ανδijI = 0, y ∈ Yf (i, j = 1, 2, 3).

Combining this equality with (4.12) we immediately deduce that A0 = 0.
The proof of the strict positive definiteness of A1 is similar to the proofs in items 2

and 3.
5. Consider

I0
def
=

3∑
i,j=1

〈(
χ(y)κf + (1− χ(y))κs

)
(∇yg

j
1(y) + ej)ξj(∇yg

i
1(y) + ei)ξi

〉
Y

=

〈
(
χ(y)κf + (1− χ(y))κs

)( 3∑
i=1

(∇yg
i
1(y) + ei)ξi

)2
〉

Y
≥ 0 ∀ ξ ∈ R3. (5.7)

Substituting the test function ψ = gi
1(y)ξiξj into (4.10a), which is legal, summing over i

and j, and using representation (4.17) we arrive at the equality I0 = E0ξ · ξ. Combining
it with estimate (5.7) we conclude that E0 is nonnegative definite. The strict positive
definiteness of E0 follows from the connectivity of the set Es due to the arguments, similar
to those from the justification of the assertion in item 2.
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Next consider

I ij
1

def
=

〈{
χ(y)

[
κf∇yg

j
2(y)− αθfe

j
]

+ (1− χ(y))
[
κs∇yg

j
2(y)− αθse

j
]} · (κf∇yg

i
2(y)− αθfe

i + κs∇yg
i
2(y)− αθse

i
)〉

Y

= −
〈{

χ(y)
(
κf∇yg

j
2(y)− αθfe

j
)

+ (1− χ(y))
(
κs∇yg

j
2(y)− αθse

j
)} · (αθf + αθs)e

i
〉
Y

= (αθf + αθs)E
ij
1 (i, j = 1, 2, 3). (5.8)

In this chain of two equalities the former holds true due to (4.11a) and the latter is valid
on the strength of (4.18). On the other hand,

3∑
i,j=1

I ij
1 ξiξj =

3∑
i,j=1

〈
χ(y)

(
κf∇yg

j
2(y)− αθfe

j
)
ξj · (κf∇yg

i
2(y)− αθfe

i)ξi

〉
Y

+
3∑

i,j=1

〈
(1− χ(y))

(
κs∇yg

j
2(y)− αθse

j
)
ξj ·

(
κs∇yg

i
2(y)− αθse

i
)
ξi

〉
Y

+
3∑

i,j=1

〈
χ(y)

(
κf∇yg

j
2(y)− αθfe

j
)
ξj ·

(
κs∇yg

i
2(y)− αθse

i
)
ξi

〉
Y

+
3∑

i,j=1

〈
(1− χ(y))

(
κs∇yg

j
2(y)− αθse

j
)
ξj ·

(
κf∇yg

i
2(y)− αθfe

i
)
ξi

〉
Y

def
= I2 + I3 + I4 + I5 ∀ ξ ∈ R3. (5.9)

Here clearly I2 + I3 ≥ 0, and interchanging indices i and j within I4 we also have

I4 + I5 =
3∑

i,j=1

〈
(κf∇yg

i
2 − αθfe

i) · (κs∇yg
j
2 − αθse

j)ξiξj

〉
Y

=
3∑

i,j=1

κfκs

〈
∇yg

i
2ξi · ∇yg

j
2ξj

〉
Y

+ αθsαθs|ξ|2

−
3∑

i,j=1

αθsκfξiξj

〈
∂gi

2

∂yj

〉

Y
−

3∑
i,j=1

αθfκsξiξj

〈
∂gj

2

∂yi

〉

Y
def
= I6 + αθsαθs|ξ|2 − I7 − I8. (5.10)

It is easy to see that I6 ≥ 0 and that I7 = I8 = 0 due to 1-periodicity of gi
2(y) and the

integration by parts formula. Hence, combining expressions (5.8)–(5.10), we establish the
estimate

E1ξ · ξ ≥ αθfαθs

αθf + αθs

|ξ|2 ∀ ξ ∈ R3

and thus conclude that E1 is strictly positively definite.
The strict positive definiteness of C0 is proved similarly.
Theorem 2 is proved.
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erties of the seabed: Part II, Math. Comp. Modelling 33 (2001), 821–841.

[6] Coussy O. Poromechanics. Chichester: John Wiley & Sons, 2004.

[7] R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for science
and technology, Vol. 5: Evolution problems I, Berlin, Springer, 2000.

[8] P. Germain, Course of mechanics of continuous media. Vol. 1, Moscow, Vysshaia
Shkola, 1983. (Russian translation of Cours de Mécanique des Milieux Continus.
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