Available online at www.sciencedirect.com

Fournal of

SclENcE@DlRECT. MAT'HEMAT[CAL
| ANALYSIS AND
ELSEVIER J. Math. Anal. Appl. 304 (2005) 703724 APPLICATIONS

www.elsevier.com/locate/jmaa

Kinetic formulation for the Graetz—Nusselt
ultra-parabolic equation

P.I. Plotnikov, S.A. Sazhenkdv

Lavrentiev Institute for Hydrodynamics, Prospekt Lavrentieva 15, Novosibirsk 630090, Russia
Received 10 November 2003
Available online 27 January 2005
Submitted by H.A. Levine

Abstract

The well-posedness of the Cauchy problems for a quasilinear ultra-parabolic equation with partial
diffusion and discontinuous convection coefficients is established for both entropy and kinetic for-
mulations. The kinetic formulation is set up and solved by means of studying of the Young measures,
associated with sequences of solutions of parabolic approximations. The kinetic equation appears as
the linear scalar equation, which describes the evolution of the distribution functions of the Young
measures in time and space, and which involves an additional ‘kinetic’ variable. The proofs of the
principal results of the paper are based on the originally constructed renormalization procedure for
the kinetic equation.
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1. Problem formulation and main results

We are interested in proposing of the existence and uniqueness theory for quasilinear
equations with partial diffusion and discontinuous convection coefficients. More precisely,
in this paper we consider the Cauchy problem for the equation

RY x (0,7):  du+ divy(vaw)) — divy (AV,b(u)) =0, (1.1a)
endowed with periodic initial data belonging £6° (R¢) and periodicity conditions

u(x,0) =uo(x) fora.ex e R?, (1.1b)

u(x +e;,t)=u(x,t) forae.x,t)eR?x(0,T). (1.1c)
Without loss of generality, we assume that

0<up(x)<1 a.e.inR?. (1.2)

Heree; (i = 1,...,d) are standard basis vectorsi{, u(x, ) is an unknown function,
A # 0 is a symmetric non-negative matrix, the flunand the diffusion functiow satisfy
the conditions

aeCt.(R), b e C2.(R), b u)>0 forueR. (1.3)
The velocity fieldv is given and we suppose thatVv, v € L&)C(Rd x [0, T]) and

v(x +e,t)=v(x,1), div, v(x,1) =0 inR? x [0, T]. (1.4)
Matrix A takesR“ onto the space

L:=3(A) CcR? (1.5)

of dimensionk := rankA. If k < d, then Eq. (1.1a) is ultra-parabolic. Ultra-parabolic
equations arise in fluid dynamics, combustion theory, and financial mathematics [7]. They
describe, in particular, non-stationary transport of matter or temperature in cases when ef-
fects of diffusion in some spatial directions are negligible as compared to convection [6].
The pioneering works on equations of the type (1.1a) were done by L. Graetz (1885) and
W. Nusselt (1910) who studied the problems of determining the thermal distribution in the
laminar flow of an incompressible fluid within cylindrical tubes for the case with both dis-
sipation due to viscosity and horizontal curvature of thermal profiles being neglected [12].
The following notation for the linear spaces of periodic functions is used throughout
this work. By L? L (R?) andH*? C H, ;P (R?) we denote the Banach spaces, which
consist of 1-periodic functions and are supplemented with the n@uihs = [|u|lLr(2),
|l grs.0 = ||ull s.r (2, Wheres2 stands for the unit cub€®, 1)¢. Forl > 0, let C! be the
closed subspace afe C!(R?) such that is 1-periodic with respect to;, 1 <i < d.
The differential operatod = div,(AV,-):C*®  L? is symmetric and non-negative
in the Hilbert spaceL?. By the Friedrichs theorem, it has the self-adjoint extension
A:D(A) — L2. In order to describe the domain of definitiah(A4), we note that
A=0*DO, D =diag)r1, ..., ,0,...,0}, 0*0 = I, with positive;. Fix an arbitrary
u € L? and introduce the functiom € L2 _(RY) and the vector fieldw e H-*(R%)
defined by

w(x) =u(0x), dw={dyw, ..., w,0,...,0".
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Afunctionu € L? belongs taD(A) if and only if w € L2 (R?) anddw e L2 (R?). Being
supplemented with the norm
2
Il = llul?, + |AY?Veu|2.  AY2Vu(x) = 0DY20w(0x),

D(A) becomes the Hilbert space, which will be denotedy
We are now in a position to define an entropy solution of problem (1.1).

Definition 1. A functionu € L> N L2(0, T; $) is an entropy solution of problem (1.1) if
and only if the integral inequality

/{ga(u)a,; + Y )V - Vil + o) dive (AV Z) — <p”(u)b/(u)|A1/2qu|2§ Vdx dt
0

+/<p(uo)§(x,0)dx >0 (1.6)
2
holds for all functionsp, ¥, andw such that

peCi.R), ¢"w)=0, ') =dwe u),
o' () = b' ()¢ (u), 1.7

and for all non-negative 1-periodic in test functions; € C%C(Rd x [0, T]) such that
Cli=r =0.

Along with problem (1.1) we consider its parabolic approximation
RY x (0, T):  dyus + divy (veas () — divy (AVib(u,)) = e Ayue, (1.8)

endowed with the boundary data (1.1b) and (1.1c), where divergence free vector fields
v, € C*(0, T; C*) and smooth functions, € C*°(R), ¢ > 0, satisfy the relations

||1)8 - l)||L1(0’T;H1‘1) + ||ag - a”Hl’l(O,l) — 0, ase \ O. (1.9)

It follows from the general theory of second order parabolic equations (see [5]) that this
problem has a unique smooth solution. Maximum principle and energy estimate imply the
inequalities

0 < Ug g 1 and ”us”Lz(O,T;f)) < C, (110)

in which the constant does not depend an

We aim to prove that problem (1.1) has a unique entropy solutimd that solutions,
of problem (1.8), (1.1b), (1.1c) converge in measure,tase N\ 0. The proof relies on the
method of kinetic equation, which allows to reduce quasilinear equations and systems to
linear scalar equations on ‘distribution’ functions involving additional ‘kinetic’ variables.
This method has been created and applied recently to study a wide range of problems, for
example, to study the equations of isentropic gas dynamicpaystems [8,10], and the
first and second order quasilinear conservation laws [1,3,9,13].

In the present work, we introduce the kinetic formulation in the form that works both
for entropy and measure valued solutions of problem (1.1). This formulation is motivated
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by the notion and properties of the Young measures associated with the segyiesoe

its appearance is considered in details in Sections 2 and 3. Before stating it let us recall
some facts from the measure theory. Furtht&(R”) denotes the Banach space of bounded
Radon measures di". Recall that the mapping : R? x (0, T) > M(R") is said to be
bounded weakly measurable and 1-periodic if for ail L%C(Rﬁ x (0, T); Co(R™)) the
function

(x,t)H/F(x,r,mdox,t(p)
Ry
is measurable and
f Fx,t, p)doyse 1(p) = f Flx —eit, p)dos.i(p)
Ry Ry

fori =1,...,d. Here, we use the standard notati®y, = o (x,t) as if measuresy ;
were parametrized byx, ¢), and, in line with the notation from [11], we say thate
LPRY x (0, T); M(R™)).

Problem K (Kinetic formulation of problenfl.1)). Let fo: Rg‘f x Ry — [0, 1] be a mea-
surable function such tha is 1-periodic inx, monotone and right continuous with respect
to A and

fo(x,A)=0 forar <O and fo(x,A)=1 fora>1 (1.11a)

It is necessary to find a distribution functighe LOO(Rﬁ x (0,T) x Ry), a parametrized
non-negative measurec L‘;,O(R;‘f x (0, T); M(R;, x £,)), and a non-negative defect mea-
sureM € M(Rf x (0, T) x R;) satisfying the following conditions:

(&) Functionf (x, ¢, 1) is 1-periodic inx, monotone and right continuousine R. More-
oVer,
f(x,t,A)=0 forr <O and  f(x,r,A)=1 forr>1 (1.11b)

In particular, 0< f < 1 a.e. inQ x R,. This means that the Stieltjes measure =
dy f (x,t, 1) is a probability measure dR;,, and spi, ; C [0, 1].

(b) Parametrized measusg ; is weakly* measurable and 1-periodicin It is supported
on|[0, 1] x £, and satisfies the conditions

/ dox (A, q) =1, /{ / Iqlzdax,f()»,q)}dxdt<oo. (1.11c)

kaﬂq Q R}LX,Cq
In particular, the function
Xt s) = / g1 doy .. q) (1.11d)

(—00,51x Ly

is 1-periodic inx, monotone and right continuous i) and the Stielties measure
d;, x (x,t, A) is supported offi0, 1] for a.e.(x,¢t) € R;i x (0, T).
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(c) Wheneveg € CL _(R,), the functionG : (x, 1) — [, g(A)d; f (x,t, 1) belongs to the
loc Ry,
Hilbert spacel.?(0, T'; £) and the equality

AV, G(x, 1) = f g Mg doyi(h, q) (1.11e)
Rk ><£q
holds for a.e(x, ) e RY x (0, T).
(d) MeasureM € M(RY x (0, T) x R;) is non-negative and 1-periodic in
(e) Distribution functionf : R? x (0, T) x R; ~ [0, 1] satisfies the equations and initial

conditions
O xRy 8 f +dive(d’ W) fo—b' WAV f) + 0, (b'(Wdhx + M) =0,
(1.11f)
2 xRy:  f(x,0,0)= fo(x, ). (1.119)

Equations (1.11f) and (1.11g) are understood in the sense of distributions and can be equiv-
alently collected into the integral formulation

/ (8,0 +d' 0)v- Vil + 6 0)divi(AV )} £ (x, 1, 1) dx di di.

OxR;
+ / nhedM + f bW dix(x,t, M) dxdt
OxR; OxR;,
+ f C(x,0,1) fo(x,A)dxdr=0 (2.11h)
2 xR,

for all 1-periodic inx smooth test functions(x, ¢, A) vanishing in some neighborhood of
the plane{r = T'} and for sufficiently largea|.

Remark 2. It is easy to see that the set of solutions to Problem K is convex.

Remark 3. If u is the entropy solution of problem (1.1) with the initial datg then it is
easy to see that there exists a solution of Problem K with the initial data

fo(x,A) =0 forx <ug(x) and fo(x,A) =1 otherwise (1.12)

such thatf(x,t,A) =0 for A < u(x,t) and f(x,t,A) = 1 otherwise. Vice versa, if
(f, 0, M) is the solution of Problem K with the initial data (1.12) ayicattains only val-
ues 0 and 1, them(x, r) = sugr: f(x,t, A) =0} is the entropy solution to problem (1.1)
with the initial dataug.

The main result of this paper is the following theorem on existence and uniqueness of
solutions of problem (1.1).

Theorem 4. Wheneverug € L°°, problem (1.1) has a unique entropy solution €
L>®(0,T; L®)NL%0,T; $).
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The proof relies on the following assertions on solvability and uniqueness of solutions
of Problem K. The first of them is proved in Section 3. It guarantees the existence of a
solution to Problem K provided with the periodicininitial data fp: Rf x Ry +— {0, 1}:

Theorem 5. Suppose that the initial distributiopf : Rj‘f x Ry — [0, 1] is periodic inx,
monotone and right continuous in satisfieq1.11a) and

foe, (1= fox,1)) =0 a.e.inR? x R;. (1.13)
In other words, fj attains the value® and 1 only. Then, Problem K has a solution.

In Section 4, we justify the renormalization procedure for the kinetic equation (1.11f),
which is the crucial point of our study. More precisely, we prove the following theorem.

Theorem 6. For any smooth convex on the interéll 1] function¢ there exists a Borel
measure, € C(R, x Q)* supported in the stri < A < 1 such that the integral inequal-

ity

/ oM +a M- Vel +b' (W) dive(AVE) ) dx di di
]R)LXQ
+ [ evocwonaxan- [ s, <o (1.14)
R; x£2 RyxQ
holds for anyl-periodic inx non-negative smooth functiarix, ¢, A), which vanishes in a
neighborhood of the plarve= T and for sufficiently largéa|.

In Section 5, by means of Theorem 6 we obtain the following theorem.

Theorem 7. Under the assumptions of Theor&nsolutions to Problem K satisfy the equal-
ity

fe, 6,0 (1— f(x,1,2) =0 ae.inR? x [0, T] x R;. (1.15)
Moreover, if(f, o, M) and(f’, o', M") are the solutions of Problem K with the same initial
data fo, thenf = f" a.e. inQ x R;.

It is clear that Theorem 4 is the consequence of Theorems 5 and 7 and Remark 3.

2. Preliminaries

In this section, we consider in details the properties of Young measures associated with
a sequence of solutions :]Rf x (0, T) — [0, 1] of problem (1.8), (1.1b), (1.1c). We start
with the observation that, by the Tartar theorem [14], [11, Chapter 3], there exists a sub-
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sequence still denoted by and a family of probability Radon measures; supported
uniformly on[0, 1] such that

s > g weakly'inL¥(Q),  g= / ¢ s (V) 2.1)
R;.

for all g € C(R,). The mappingx, ) — uy , is weakly* measurable and 1-periodicin

Setgq, := AY2V,u.. The vector fields, :R? x (0, T) — L are measurable and 1-
periodic inx. From (1.10) it follows that the sequen¢e., q,) is bounded inL?, which
along with the Ball theorem [2] yields the following lemma.

Lemma 8. There exists a subsequence still denoted:Ryg,) and a measure-valued
1-periodic inx functiono € L (Q, M(R,, x £,)) such that for all continuous functions
g R, x L, — R satisfying the growth conditiofz (&, ¢)| < c(1+|A| +1g)?,0< p < 2,
we haveg(u., q,) — gweaklyinL"(Q),1<r<2/p,g= lexﬁq g, q)doy (X, q) for
a.e.(x,t) € 0, and the probability measure, ; is supported ir{0, 1] x L,.

Lemma 9. Under the above assumptions there exists a mappiegd}u(Q; M(R;)) and
a functiong € L1(Q) such that for allg € C(R;,), we have

fg()\)dvx,z(k)= / gMW)q2doy (h, ), (2.2)
RA ]R;»xﬁq
/g()&)d‘)x‘t()\)‘ <lglew,)@(x,1) forae.(x,1) e Q. (2.3)

The mapping is 1-periodic inx andsptv, ; C [0, 1] for a.e.(x, ) € Q.
In the formulation of the IemmaLi,(Q; M(R;)) denotes the space of weaklynea-

surable mappings : Q — M(R;) such that for anyF € L>(Q; Co(R;)) the integral
Jo | Jg, F dve: ()] dx dt is finite.

Proof. Let a non-negative functioh € C5°(R) be satisfying the conditionsh’(s) > 0,
h(s) =1 when|s| < 1, h(s) = 0 when|s| > 2. It is clear thatig|*x(n"1|q|) ' |q|?, as
n /' 0o, and that

/|q5|2h(n_l|q5|)dxdt</|q8|2dxdtéCq < oo0.
0 0

From this we conclude that non-negative functiangx,:) = |qg|2h(n*1|q€|), n=
1,2, ..., satisfy the inequalities

on <¢@pt1 and /gon(x, Ndxdt<C, forn>1 (2.4)
Q
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Since| - |2h(n1) € C(R;, x Ly), we can assume that, — ¢, weakly" in L*(Q), as
e\, 0, where

Pn(x, 1) = / lg1?h(ntIg|)doy (A, q) fora.e.(x,1) e Q. (2.5)
R xLy

Inequalities (2.4) imply, < @a+1 and||@x |l 1) < C,4- By the Fatou theorem, there exists
@ € LY(Q) such thatp, (x,1) / @(x,1) a.e. inQ, which along with (2.5) yields

/ lg1?h(n~Iql) do (A, q) 7 @(x, 1)

R)Lxﬁq

fora.e.(x, 1) € Q. Sincelg|2h(n~L|q|) 7 |q|%, asn /' oo, the Fatou theorem yields

/ Ig12doy (L, q) =@(x,1) <oo a.e.x,r)eQ. (2.6)
Ry xLy

Next, note that for allg € C(R;), we have|g(M)|lg|?h(n~tiq]) < lgllcw,)lg]? and
gM)glPh(n~Yql) = g(V)|g|?, asn 7 oo. From this, (2.6), and the Lebesgue dominated
convergence theorem we conclude that

/ gW1glPh(n~tigl) doy (. q) — / gWglPdoy;(h, q), (2.7)
R}LX[,q ]R)\X[,q

asn / oo, and that

’ / g()»)IQIZde,z()»,q)‘<|Igllc<RA)</)(x,t)- (2.8)
RAxEq

Therefore, the function

Py (x,1) > / g)lgl’doy (., q) (2.9)
R)\Xﬁq

belongs taL1(Q) and satisfies the inequalities
|®(x, 0] < lIgle@e. 1) ae.inRe x (0,T). (2.10)

Let £ C Rf x (0, T) be a measurable set with a complement of zero measure such that
@(x,1) < oo for each(x, r) € E. Whenevel(x, 1) € E, the mapping — @, (x, t) is linear

and continuous or (R,). By the Riesz theorem, there exists a Radon measyyes
M(R;) such that the identity

/g()»)dvx,t()»)=@g(X,l) (2.11)
Ry

holds for all compactly supportegd € C(R;) and (x,¢) € E. Note that (2.2) and (2.3)
follow from (2.9) and (2.10). It remains to prove that spt C [0, 1]. Choose an arbitrary
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open intervall > [0, 1] and a non-negative functionpe C(R) such that;(s) = 0 when
s € [0, 1], andn(s) =1 whens e R\ I. Since 0< u, < 1, we have the identity (z.) =0,
which along with Lemma 8 yields

w- im nGue)lge1°h (™ 1g.1) = f (g *h(n"Igl) dox.,(r, q) =0.
Ry xLy
From this, (2.7), and (2.8) we conclude that

o< [ nlafdo.a =0
(R)»\I)Xﬁq R;LX[,q
for all (x, r) € E and the lemma follows. O
Lemma 10. There exist subsequence;, ¢,) and non-negative Radon measurks

and M on R? x R, x R; such thatMy and M are 1-periodic in x and supported in
RY x [0, T] x [0, 1], and the equalities

IiLnO/g(x,t,ug)(lqglz+8|qug|2)dxdt: / g(x,t,1)dMo, (2.12)
&€
o O xRy
/ ngozf{/gdvx,t()»)}dxdt—i- / gdM (2.13)
O xRy, 0 Ry OxRy

hold for anyl-periodic inx functiong C(}Rﬁf x (0, T) x Ry).

Proof. Let us consider the functiona, defined by

Mg = [ gt (. + eIV ) dx ar (2.14)
RYx(0,T)
It follows from (1.10) that
|(Me, )| < cdiam(K) | gll c(ra <, xRy) (2.15)

for every functiong C(Rﬁ x R; x R;) supported in some compaktC Rﬁ x R; x Ry.
Moreover,(M,, g) = 0 for each continuous functiog, which vanishes omf x [0, T'] x

[0, 1]. By the Riesz theoremi/, is a Radon measure R? x R, x R; supported ifR¢ x

[0, T] x [0, 1]. Clearly, it is 1-periodic inc. After passing to a subsequence, we can assume
that the sequenc#f, converges weaklyto a Radon measur& in ij x R, x Ry, as

e\ 0. It is clear that the measufdy is 1-periodic inx and that spMg C }Rﬁ x [0, T] x

[0, 1]. Next, note that the inequality

/ g00x. g1 (o) (19,12 + el Ve |2) dx dt

R4 x (0,T)

> / g0(x. Ng1(ue)lq.|?h (g, ) dx di
Réx(0,T)
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holds for all non-negative compactly supported functigas C(Rfj x Ry), g1 € C(R;)
and integen > 1. Passing to the limit in both the sides of this inequalitys &g 0, along
a suitable subsequence, we arrive at

(Mo, gog1) = / go(x, 1) / g1W)lg®h(ntIql) doy. (1, q)}dx dt.
R4 x(0,T) RixLy
From this, (2.7), (2.11), and (2.14) we conclude that the inequality

(Mo, gog1) > / go(x, 1) /gl(k)dvx,z(k)}dxdt (2.16)
R4 x(0,T) Ry,

holds for all non-negative compactly supported functigns C(Rff x Ry), g1 € CRy).
On the other hand, the formula

(M*, g)= f {/g(x,z,x)dvx,t(x)}dxdz Vg € Co(RY x R, x R;)
R¢x(0,T) R

defines a non-negative Radon measureRdnx R, x R; with sptM* c R? x [0, T] x

[0, 1]. It follows from this and (2.16) that the defect measWe= My — M* satisfies
the inequality(M, gog1) = (Mo, gog1) — (M™, gog1) > 0 for all non-negative functions
gog1 With gg € CC(]R;’ x R;) and g1 € C.(R,). Note that the linear span of the set of
such functions is dense @.(R¢ x R, x R;) and, consequently, the inequality, g) > 0
holds for all non-negative functionse CC(]R;{ x R; x R;). HenceM > 0, and the lemma
follows. O

The next lemma shows that the measMigdoes not concentrate near the pléane: 0}.

Lemma 11. MeasureMg defined in Lemmao0 satisfies the limiting relation

lim / dMo(x,t,)) =0.
\0
2x[0,7]xR;

Proof. We start with the observation that the functiong-,¢), r € [0, T], ¢ > 0, are
equicontinuous in the weak topology. Multiplying both the sides of Eq. (1.8) by a func-
tion ¢ € C* and integrating over the cylinde? x [0, ¢], we arrive at

fa,ug(x,t){(x)dx =/(v8(x,t)a§(u8(x,t)))-ng‘(x)dx

2 2

+/(b(ug(x,t))divx(Ang(x))
2
+ eug(x,1)Axg(x))dx forte (0, 7). (2.17)

Since ||ve(1)|| yr1 — [lv(®)||y12 in L0, T), a. — a uniformly on every interval and
0 < u, < 1, there exist a functiorp € L1(0, T) and constants, and ¢, such that
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Ve, Dl L1071y < P @), lae(ue)| < cqy @and|b(ue)| < cp. From this and (2.17) we con-
clude that

’/azus(x,t);“(x)dx <glicz(cap @) + cpllAll + ).
2

Since the embedding -2 < C? is compact fos > s; = [d/2] + 5/2, we obtain
[0rue -, )| fyos2 S clp(t) +1) forze(0,T) ands > sq4. (2.18)

Hence, the mappings, : [0, T] — H %2 are equicontinuous. In particular, (1) — ug
in H~*2 uniformly with respect ta € (0, 1), asr \, 0. On the other hand, the values of
functionsu, (-, t) belong to the interval|u, ||~ < 1, which is a compact subset &f -2,
By the Arcel theorem, the séfi.}.c(0.1) is relatively compact irC (0, T'; H~*2). Hence,
there exists a subsequence still denoted bgnd a functionu* € L such thats, (1) —
u* (1) in H=51 uniformly on the segmeni, 7']. Moreoveru* (1) — ug in H %2, ast \, 0.
Hence,
ug(-, 1) —> u*(t) ase\ 0 and  u*(t) > up ast\ 0,

weakly inL?. (2.19)
Fix an arbitrary vectog € R?. Multiplying both sides of Eq. (1.8) by, and integrating
over$2 x (0, T), we obtain

1 1
SlueCon 7z + /j (8 ee)lge P + 1V P) dxdi = 5 us (.02
(£2+2)x(0,1)

Using (2.14) and noting that the measwfg is supported irRﬁ x [0, T] x [0, 1], we can
rewrite this equality in the form

1 2 1
et 02+ f aM(x,1.2) = S ol (2.20)
(24z7)x(=6,t) xR,
with an arbitrary positivel. Since M, converges weakly to the measuvg and the se-
quenceu. (-, t) converges weakly to*(-, ¢), we have

dMop(x,t, 1) <limsup / dMg(x,t,)).
0
(£24z)x(=8,1) xRy, N (24z2)x(—=8,1) xRy,

On the other hand, relations (2.19) imply the inequality
lu*¢.0) 2 < liminf |ueC- 02
which along with (2.20) gives

1 1
dMo(x,t, 1) < EHMO”iZ ) |lu*c, t)||i2 for everyz e RY.

(2+42z2)x(—8,t) xRy,
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It remains to note that
liminffu-. 0] L2 > ol 2.
and the lemma follows. O
Let us introduce the distribution functigh of the Young measurg, ;,
flx,t,h) = f Locndpx(s). (2.21)

Ry

We observe that the distribution functighsatisfies all conditions in item (&) of the formu-
lation of Problem K. The next lemma establishes the relation between the furfciod
the Young measure ;.

Lemma 12. The identity
AYRY, f(x 1 0) = — / qdo. (A, q)
ﬁq
holds true in the sense of distributions.
Proof. Considerp(us) — ¢* weakly* in L®(Q), AY?V,¢p(u,) — G* weakly inL2(Q),

ase \, 0, wherey is an arbitrary smooth function. For an arbitrary smooth 1-periodic in
vector-functions, one has both

/§~A1/2Vx<p(u5)dxdt<6 / div, (AY2¢)¢' (M) f (x, 1, ) dx dt d )
I3

(0] OxR;
and

/ ¢ -Al/zvxso(ua)dxdtgg [ £@'(0) - qdoy (h, q)dx dt,
0 QXR)Lxﬁq

which completes the proof.O

3. Proof of Theorem 5

Choose an arbitrary smooth functipre Cg°(R). Let

+00 +00 +00
D) =— / pds, .\ =— / a,pds, w) = — / bods. (3.1
s 2 by

Multiplying both sides of Eq. (1.8) by(ue)n(x, t), wheren € C*®°(Q), n(x + e;,t) =
n(x,t), andn(x, T) =0, and integrating ove@, we obtain
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[ (@ @onn + wtueyve - -+ wue) divy AV,
0

+ 8D (Ue) Ay — B ()b (ue)| AY2V 10| Pn — 60 ()| Vue |20} dx dt

+f¢>(uos)n(x,0)dx —o0,
2

As ¢ \{ 0, on the strength of Lemmas 8-10, we derive

/ {@)dm+w)v- Vin+wR) dive(AVen) } dpuy (M) dx di
O xRy

— / n®" (M)b' (A)dvy (1) dx dt

OxRy,
- / (D”(X)ndM—i—/CD(uo)n(x,O)dx=O, (3.2
QXR)‘ 2
where¥ (\) = — )\+OO a'(s)p(s)ds, and conclude that the parametrized measyreand

the defect measur® satisfy conditions of items (b) and (d) of formulation of Problem K.
Substituting (3.1) into (3.2), using the notions of the Stieltjes integrals with respect to the
measuresl, f andd, x (see items (a) and (b) of the formulation of Problem K) and the
equality

+o0
f(/{(s)ds)dkf(x,t,)»)=/§‘()»)f(x,t,)u)d)»
R;

R, A

that holds for a.e(x, 1) € R? x [0, T'] for an arbitrary; € Co(R) on the strength of the
theory of the Stieltjes integral, we arrive at the identity

/ (0 (pn) +a’ W) v - Vi (pn) + b (W) dive (AVi(em)) f(x, 2, A) dx dt d\
O xRy

+ / oo fodx di + / 8 (pm) dM
.QX]R;L QXR)»

+ / B (0, (@n) dy x (x., 1, 1) dx di =O. (3.3)
O xRy,

The linear span ofyn} is dense iINC*°(R; x Q), therefore, (3.3) is valid with a test
function ¢ (A, x, t) on the place of¢n). Thus, item (e) of formulation of Problem K is
fulfilled.

In order to finish the justification of the theorem, it remains to notice that the condition
in item (c) of the formulation of Problem K holds on the strength of Lemma 12.
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4. Proof of Theorem 6
The proof is divided into five steps.

Step 1. The smoothing of the kinetic equatioimtroduce the mollifiero € C5°(R),
loll 1@ty =1 that is a non-negative smooth function with a compact suppofoahi.

For any continuous functiofi : R? x R;" x R, > R we denote
fs(xvta'):w_&‘*f(x3tv')s fT(x"v)‘)sz*f(x3'a)")’ and
f/’l(vt’)"):wh**wh*f(vts)")

Further we writef,g instead of( f,)g for o, B = h, s, . Denote byQ. the cylinderQ, =
ON{t<t<T—r1}.Set

g(x»t,)\)zwshr(i_x»)-h—)\yt__t),

where
1 /i 1 X1 X4 1 t
S}" = — -1, = — . — 1, _ — -1,
) s“’(s) ) hd“’(h) ‘”(h) o r“’(r)

Wsht = WsWhpWr.

and

Further we also writey,g instead ofwywg for o, B =h, s, 7.
Substitutingz (x, ¢, ) on the place of a test function into (1.11h), we obtain the follow-
ing equation for the smoothed distribution function, where we wrjte, andz instead of
A, X, andr:
O fshr + a' (M) -V, Sshr — b’ (1) div, (AV, Sshr) + 01 (b/()\)a)u)(shr + Mshr)
h h ht)
=RV 4 RYM L RYMDin 0, x R,, 4.1)

where the rest terms are given by the formulas

R;_Shr) = diVX (a/()\)vahr) - diVX(a/vf)Shr’
RS = 0, (b5 xshe — (09 xhe)s):
RS = —b' (V) divx (AVy fyne) + (B dive (AV, fire))

5°

Step 2. Renormalization of the smoothed kinetic equaticet ¢ € C2(R) be an arbitrary
convex on[0, 1] function. Multiplying both sides of (4.1) by’( fs1), we obtain the equa-
tion
d(fone) +d W - Vep(fone) — b (1) divy (AVX‘P(fshr))
_ B)LH(sht) _ G(shr) _ I(shr) — 0, (4_2)
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where
H = —' (fone) (0 083 Xshe + Minz )

2
I(Shr) = (p//(thf){b/()")a)\fihr a)LXSh‘L' + Mpe kashr - b/()\)|A1/2fovhr| },
G(sht) — (p/(fsh‘[)(R:(l_ShT) + R;Shr) + RéShT)).

Lemma 13. Inequality/*"™ > 0 holds inQ; x R;.

Proof. We haveb’ > 0, ¢”(fsnr) = 0, asg is convex on0, 1], and (9, fsn:) Mgy = 0, as
f is monotone non-decreasing with respeckt@nd asM is non-negative. Therefore, it
suffices to prove that

2
akfvhra)hx‘vhr - |A1/2vvahr| Z 0. (43)
On the strength of items (a)—(c) of the formulation of Problem K, we have

O fsne(x,8,1) = /{ / wshf(x—y,t—S,)»—{)day,g(z,q)}dydé, (4.4)
]R“{,ng R{X[,q

Bosohe = / { / wsmx—y,r—s,x—z>|q|2doy,s<c,q>}dyds, (4.5)

Ri'gl Ry xLy
A2, foe = | { / wm<x—y,r—s,x—oqdoy,g(q,q)}dyds. (.6)
RILE RexLy
Using (4.4)—(4.6), we reduce inequality (4.3) to the equivalent form

/ { / wshf|q|2doy,g(c,q>}dyds / { / wshfdcf},,s(;,q)}dyds

Rﬁl Ry xLy R;{;l Ry xLy

2
—( / { / wquoy,g@,q)}dyds) >0, 4.7)

R‘){El Ry x Ly
On the strength of the version of Hélder’s inequality (see, for example, [15, Chapter 1, 83,
formula (5)]), we conclude that (4.7) holds truex

On the strength of Lemma 13, we obtain the following inequality from (4.2):
39 (fsne) +a' O)v - Vo (fnr) — b’ (1) div, (Avx‘p(fsht))
— 9, HOM) — g6 >, (4.8)

Step 3. Passage to the limit, as\ 0. We havef,; — fi. strongly inL{ (R, x Q.) for

loc
anyr > 1 and weakly in L*° (R, x Q;), ass \ 0, due to the well-known properties of

mollifying kernels.
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Lemma 14. Function fj,; (x, t, A) satisfies in the cylinde@, x R, the inequality
3 (fue) +a' W - Vep(fie) — b () dive (AV2g(firr))
— 9, H" — G >0 (4.9)

in the sense of distributions. Hefé"™) is a Radon measure i@, x R;, such that

[ oo um,ys <6 sPtH®™ € Qr x 10,115 (4.10)
G = (fir)RI,  RYD =div, (¢ 0)v fire) — dive(@'v fpe. (4.11)

Proof. For any integer non-negative and g the functionsagaffshf are uniformly

bounded with respect to and converge a.e. if; x R, to a;}a,ﬁfhf. Hence, we apply
the Lebesgue dominated convergence theorem to the sum of the first three terms in (4.8)
and conclude that this expression convergesﬂg@(QT x R;) to

d@(fne) +d W - Vep(fir) — b' (1) divy (Avxw(fhr)),
ass \, 0. The same arguments give

¢ (S RP"™ = ¢ (i) RY™
in LL (Q; x R;), ass \, 0. The passage to the limit in the summarsgig/ *"* and
¢ (fine)(RS" + RS is based on the following lemma.

Lemma 15.
(i) The family of function®’(1)0; xshr + Msn. is uniformly bounded inL1(0; x Ry)
with respect tos, #, andz.

(iiy Forany fixedr, T > Ofunctiony;,, (x, ¢, 1) is Lipschitz continuous on the s@t x R, .

Proof. Letusintegrate Eq. (4.1) over the interyaloo, Ag) with respect to.. Sincey and
M vanish fori < 0, we have

b’ (h0) 3o Xshr (%, 1, A0) + Mz (x, 1, h0) = @ (x, 1, Ao), (4.12)
where
Ao
@O (x 1, 1) 1= — / (b' (W) divy (AVy fsne) — 3 fone
%
—d' W) - Vs fane + R 4 RYMD 4 RYM) d. (4.13)

Sinceb and x,,, are monotonous non-decreasing with respect tand sinceM;y,; is
non-negative, we have thé"™ > 0. Thus, we get

”b/a)»o)(shr + Mpe ”Ll(QI xRy) = / ¢(Shr) (x, t, )»0) dx dt d)»o. (414)

R)LO xQr
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We calculate the right-hand side integral explicitly using integration by parts with respect
tox and periodicity property in the terms containibigh) div, (AVy fsnz), @’ (W) v - Vy fone,
R(””) andR(”") (all these mtegrals are equal to zero), and using integration by parts with
respect ton in the term contalnlng‘e ). Thus, we obtain

/ (@ (x, 1, ko) + {b” (A0) xsnr — (B xno)s }) dhodx dt

R)LO x Q¢

A0
/ /{fshr(x’T—T,)»)—fshr(X,'L’,)»)}d)udxd)»o

]RAOX-Q —00

+ /{b’(l + ) xshe (X, 1, 1+ 8) — (0 xne)s(x, 1, 14 5)} dx dt
0.

- /{b/(_S)Xshr(xa L, _S) - (b/th)s(xa L, _S)} dxdt. (415)
0:

Computing the last two integrals, we take into account that x(x,z,1), as well as
A f(x,t,A), is a constant function ofoo, 0) and on[1, +o0) for fixed x andt and
that the support of the regularization kerag{A — &) lies in the intervalh —s < & < A+s}
for any fixedx. On the strength of these facts together with the propelvtkas?l%c(R) and
f € L*®(Q x Ry), from (4.14) and (4.15) we deduce

||b/3AoXshr + Mghe ||L1(QIXRA) < 6, (4.16)

wherec, does not depend an k, andt. Thus, assertion (i) of the lemma is proved.
Now, let us prove that, if is less than some fixed valug, then the bound

DY (x 1, 00) < can(h, T) (4.17)

holds for any fixedr, T > 0 for all (x, ¢, Ag) € Rﬁ x [0, T] x R,. Equality (4.13) along
with the well-known properties of the mollifying kernels implies the estimate

A0
@M (x, 1, 00) < cD(h, 1) + f RS x|, (4.18)
—00

Wherec(l) does not depend an x, ¢, andig. Using Taylor's expansion
b'(ho) — ' (§) =b"(§)(ho — &) + p(R0, §), |p()»o,§)| cplko—él (4.19)
we represent

Ao
/ R;Sht) dh = b/(ko)axoxslzr — (b/a)LOth)s

—00

1
/ (&) (e (2 1.20) — e (82 1. Do — 58)) dE
0
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+ / w3 (ho — £)p(ho, &) xhe (x. 1, £) dE, (4.20)
Re
wherep(L) = o' (ML +w (1), fRA p(A)dir =0.As spt C [0, 1], maxw = 1, and formulas
(1.11c) and (1.11d) take place, the bound

11
e G2 < o f f Xy dyds <@ (h, ) (4.21)

[y—x|<h | —tI<T

isvalid forall (x, ¢, 1) € Rff x [0, T] x R, witha constantﬁ) that does not depend an¢,
anda. Also, in view of (4.19) we observe that

S
’ / wsuo—s)p(xo,é)th(x,r,s)ds‘ <eos [ rntr.r.)de. (4.22)
Rg —S
Aggregating (4.18), (4.20)—(4.22), we conclude that (4.17) holds true.
Next, integrating both sides of (4.12) with respect.goover the interva[A’, A”] (A" <
A"), we derive

"

Xsht (X, 1, )\”) — Xshe (X, 1, )\/) :/
)\4/

A,”
OGO (x. 1. 7o) do /Mshr(x,t,)»o)d)»o
b'(0) o
)\/

As x;n¢ IS monotone with respect to My, is non-negativel’ > 0, and (4.17) holds, we
conclude that

Cox(h, T)
0< ) — )< =) =) 4.23
Xshe (X ) — Xshe(x ) (mmkoe[o,l]b/()\O) | | ( )
Passing to the limit, as™\ 0, from (4.23) we obtain
C**(h, t) /
O< XH (xs tv )\‘//) — Xh (x7 ts )"/) g (—>|)“N —A |9
" ! MiNoeio,11b' (ko)
which completes the proof of assertion (ii)0
Assertion (i) of Lemma 15 immediately implies the bound
h
[ 2, 00 < XN ()] ee = (4.24)
wherec does not depend an i, andz. Thus,Hy,; — Hp, weakly* in C(Ry, x Q.)*, as
s \. 0, the bound (4.10) holds true, and the suppor#pf lies in the strip{0 < A < 1}, as
the supports of both, y andM lie there.

Now, in order to complete the verification of Lemma 14, it suffices to prove the follow-
ing lemma.

Lemma 16. For any¢ € C3°(R;, x Qy),

/ £@' (fone) (RS + RS")dx drdr — 0, ass \,0.
RAXQI
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Proof. We have

f £ (fone) (RS™™ + RE") dx di d.
O xRy,

- / {divi (AV. (0 Fune))) F* (e 1, 1)
0. xR;,
+ [’ Fsn) 0L + 0" (fsne) s fsne |¥° (x, 1, 1) } dx dt da.,

where
A
FS(e,t,0) =b fone — (0 fur)s,  PS(x,1,0) = / RS (x, 1, %) di.
—0o0
Recall that

o0
0< fanr <1 and /|3Afgh,(x,t,)\)|dkzl.
—0o0

Hence,

/ £ (fone) (RS™™ + RY") dx di d.
0 xR,

<c@ @, t.h)  sup (|Gt )|+ | FE G, 1 0)]).
(x,t,1)ESpte

721

This estimate implies that it is sufficient to prove ti#t— 0 and¥® — 0 uniformly on
any compact subset @, x R;, ass N\ 0. The first of these limiting relations follows from

the representation

FP(x,1, 1) =/ws()\ — &) (') —=b'©) fur(x,1,8) d8,

Re

the bound| f;| < 1, and Taylor’s expansion (4.19). The second limiting relation follows
from (4.20), (4.22), and the fact that, on the strength of assertion (ii) of Lemma 15, the

limiting relations

1
fﬁ(s)(m(x, £.0) — g (¥ 1.0 —5E))dE -0 and
0

N
cps/)(h,(x,t,fg‘)df;‘—>0

hold true, as \(0. O
a
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Step 4. Passage to the limit, as ™\ 0.
Lemma 17. Function f;, (x, ¢, 1) satisfies the integral inequality

/ o(fi{0:¢ +a’ Mv- Vil + ' (M) dive(AVi0) ) dx dr di
O xRy

+ / o(for)¢(x,0,A)dx dx — / WedHM (x,1, 1)

2xR;, OxRy
+ / cGMdx drdxr <0, (4.25)
O xRy,

where¢ (x, t, A) is a non-negativé-periodic inx smooth function vanishing fer= 7 and
sufficiently largex; H™ is a Radon measure i@ x R, such that

IH®] ¢ coxr,» Sc2o sPtH® 0 x [0, 115, (4.26)

G =/ (f){dive(a’ W fi) — dive (@’ W f), }. (4.27)
Proof. Fix an arbitrary smally € (0, 7) and assume that < #o. Sincedy f,, converges to
oY fnin Li,.(Qy x Ry) for any integer non-negativeand for any- > 1, and sincefy. (to)

converges tofj (o) in LI, (2 x R;) for almost everyyg, we conclude thaG "™ — G®

in Lig.(Qrp x Ry) ande(fire (10)) = ¢(fi(0)) in L (2 x Ry), ast \, 0.
Passing to the limit in (4.9), as\, 0, we derive the inequality

/ (fi){dit +a' v - Vil +5'() divy (AV,0) | dx di d

QtOX]R)»

+ f o(fa(x, 0. 0))¢(x, 10, 1) dx d

.Q)(R)L
— / dedHD + f cGM dxdrdxr <0, (4.28)
QtOXRk QtOX]R)L

where measurél ) is the weak* limit inC(Q x R;)* of H#™ and¢(x, 1, A) is an arbi-
trary 1-periodic ink smooth test function which vanishes foe [T — 1, T].

Recall thaty is a continuous convex ofD, 1] function and thatfj (r0) converges
weakly* in L®(£2 x R,) to fon, due to Lemma 11. On the strength of the lower semi-
continuity property, this yields

iminf [ cto)g(f(10) dx i > / £ () fon) dx d.
° 2 xRy, xRy,

Using this inequality and passing to the limit in (4.28) @5, 0, we obtain (4.25). O
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Step 5. Passage to the limit, &\ 0. In view of the properties of the mollifying kernels,
we have

o(fn) > o(f) InLy (Ry x Q), o(fon) = ¢(fo) In L (R x 2) (4.29)
Vp > 1, ash \, 0. On the strength of the bound (4.26), the limiting relation

H®™ — H, weaklyin C(R; x 0)* (4.30)
takes place. On the strength of the propertie§ 8P stated in Lemma 17, measukg, has
the properties from the formulation of Proposition 6. Finally,

G" -0 inLi.(Q xR,), ash \(0, (4.31)

on the strength of [4, Lemma 1l.1] and (4.29). Using (4.29)—(4.31), we fulfill the limiting
transition, as \, 0, in (4.25) and obtain (1.14). Theorem 6 is proved.

5. Proof of Theorem 7

Proof of the first part of the theorem, i.e., of the assertion on the structure of solutions
of Problem K, is based on the special choice of test functioasdy in the renormalized
inequality (1.14): we take

e(H=rf =D, (5.1)
and¢ (x, t, A) = 1(A)¢2(¢) such that

f1is non-negative and¢; =1 on[O0,1], (5.2)
{2isnon-negative ((T)=0 and ¢, <0 forr<T. (5.3)

It is easy to see that such choicegond¢ makes sense. Substituting these functions into
(1.14) and observing that, ¢ =0, ¢(fo) =0, and that

/ BedHy(x,1,1) =0
OxR;
(due to (5.2) and s C (Q x [0, 1],)), we see that (1.14) takes the form

| avracaraa<o
0x[0,1],,
Inview of (5.1), (5.3), and point (a) of the formulation of Problem K, this inequality implies
o(f) =0, which yields thatf (x, ¢, ) attains one of only two values, either zero or one, at
almost every pointx,t, 1) € [0, 1] x Q.
The second assertion of the theorem is true due to Remark 2 and to the first assertion of
the theorem.
We end our paper by the remark that, sintes the distribution function of the Young
measureu, , and sincef (x,#,1) =0 for L < u(x,t) and f(x,7,1) =1 for A > u(x,1)
due to Theorem 7 and Remark 3, we have fhat is the Dirac measure dR, centered at
the pointh = u(x, r) for a.e.(x, ) € Q. On the strength of [11, Chapter 3, Theorem 2.31],
this yields that the sequence of solutiansof problem (1.8), (1.1b), (1.1c) converges to
the entropy solutiom strongly inL1, ase \ 0.
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