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1. Problem formulation and main results

We are interested in proposing of the existence and uniqueness theory for qua
equations with partial diffusion and discontinuous convection coefficients. More prec
in this paper we consider the Cauchy problem for the equation

R
d × (0, T ): ∂tu + divx

(
va(u)

) − divx

(
A∇xb(u)

) = 0, (1.1a)

endowed with periodic initial data belonging toL∞(Rd) and periodicity conditions

u(x,0) = u0(x) for a.e.x ∈ R
d, (1.1b)

u(x + ei , t) = u(x, t) for a.e.(x, t) ∈ R
d × (0, T ). (1.1c)

Without loss of generality, we assume that

0� u0(x) � 1 a.e. inR
d . (1.2)

Hereei (i = 1, . . . , d) are standard basis vectors inR
d , u(x, t) is an unknown function

A �= 0 is a symmetric non-negative matrix, the fluxa and the diffusion functionb satisfy
the conditions

a ∈ C1
loc(R), b ∈ C2

loc(R), b′(u) > 0 for u ∈ R. (1.3)

The velocity fieldv is given and we suppose thatv,∇xv ∈ L1
loc(R

d × [0, T ]) and

v(x + ei , t) = v(x, t), divx v(x, t) = 0 in R
d × [0, T ]. (1.4)

Matrix A takesRd onto the space

L := �(A) ⊂ R
d (1.5)

of dimensionk := rankA. If k < d , then Eq. (1.1a) is ultra-parabolic. Ultra-parabo
equations arise in fluid dynamics, combustion theory, and financial mathematics [7]
describe, in particular, non-stationary transport of matter or temperature in cases w
fects of diffusion in some spatial directions are negligible as compared to convectio
The pioneering works on equations of the type (1.1a) were done by L. Graetz (188
W. Nusselt (1910) who studied the problems of determining the thermal distribution
laminar flow of an incompressible fluid within cylindrical tubes for the case with both
sipation due to viscosity and horizontal curvature of thermal profiles being neglected

The following notation for the linear spaces of periodic functions is used throug
this work. ByLp ⊂ L

p

loc(R
d) andHs,p ⊂ H

s,p

loc (Rd) we denote the Banach spaces, wh
consist of 1-periodic functions and are supplemented with the norms‖u‖Lp = ‖u‖Lp(Ω),
‖u‖Hs,p = ‖u‖Hs,p(Ω), whereΩ stands for the unit cube(0,1)d . For l � 0, let Cl be the
closed subspace ofu ∈ Cl(Rd) such thatu is 1-periodic with respect toxi , 1� i � d .

The differential operatorA = divx(A∇x ·) :C∞ 
→ L2 is symmetric and non-negativ
in the Hilbert spaceL2. By the Friedrichs theorem, it has the self-adjoint extens
A :D(A) 
→ L2. In order to describe the domain of definitionD(A), we note that
A = O∗DO, D = diag{λ1, . . . , λk,0, . . . ,0}, O∗O = I , with positiveλi . Fix an arbitrary
u ∈ L2 and introduce the functionw ∈ L2

loc(R
d) and the vector field∂w ∈ H

−1,2
loc (Rd)

defined by
w(x) = u(Ox), ∂w = {∂x1w, . . . , ∂xk
w,0, . . . ,0}�.
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A functionu ∈ L2 belongs toD(A) if and only if w ∈ L2
loc(R

d) and∂w ∈ L2
loc(R

d). Being
supplemented with the norm

‖u‖2
H := ‖u‖2

L2 + ∥∥A1/2∇xu
∥∥2

L2, A1/2∇xu(x) := OD1/2∂w(Ox),

D(A) becomes the Hilbert space, which will be denoted byH.
We are now in a position to define an entropy solution of problem (1.1).

Definition 1. A function u ∈ L∞ ∩ L2(0, T ;H) is an entropy solution of problem (1.1)
and only if the integral inequality∫

Q

{
ϕ(u)∂t ζ + ψ(u)v · ∇xζ + ω(u)divx(A∇xζ ) − ϕ′′(u)b′(u)

∣∣A1/2∇xu
∣∣2ζ}

dx dt

+
∫
Ω

ϕ(u0)ζ(x,0) dx � 0 (1.6)

holds for all functionsϕ, ψ , andω such that

ϕ ∈ C2
loc(R), ϕ′′(u) � 0, ψ ′(u) = a′(u)ϕ′(u),

ω′(u) = b′(u)ϕ′(u), (1.7)

and for all non-negative 1-periodic inx test functionsζ ∈ C2
loc(R

d × [0, T ]) such that
ζ |t=T = 0.

Along with problem (1.1) we consider its parabolic approximation

R
d × (0, T ): ∂tuε + divx

(
vεaε(uε)

) − divx

(
A∇xb(uε)

) = ε∆xuε, (1.8)

endowed with the boundary data (1.1b) and (1.1c), where divergence free vector
vε ∈ C∞(0, T ;C∞) and smooth functionsaε ∈ C∞(R), ε > 0, satisfy the relations

‖vε − v‖L1(0,T ;H1,1) + ‖aε − a‖H1,1(0,1) → 0, asε ↘ 0. (1.9)

It follows from the general theory of second order parabolic equations (see [5]) tha
problem has a unique smooth solution. Maximum principle and energy estimate imp
inequalities

0� uε � 1 and ‖uε‖L2(0,T ;H) � c, (1.10)

in which the constantc does not depend onε.
We aim to prove that problem (1.1) has a unique entropy solutionu and that solutionsuε

of problem (1.8), (1.1b), (1.1c) converge in measure tou, asε ↘ 0. The proof relies on th
method of kinetic equation, which allows to reduce quasilinear equations and syst
linear scalar equations on ‘distribution’ functions involving additional ‘kinetic’ variab
This method has been created and applied recently to study a wide range of proble
example, to study the equations of isentropic gas dynamics andp-systems [8,10], and th
first and second order quasilinear conservation laws [1,3,9,13].

In the present work, we introduce the kinetic formulation in the form that works

for entropy and measure valued solutions of problem (1.1). This formulation is motivated
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by the notion and properties of the Young measures associated with the sequenceuε, and
its appearance is considered in details in Sections 2 and 3. Before stating it let us
some facts from the measure theory. Further,M(Rn) denotes the Banach space of bound
Radon measures onRn. Recall that the mappingσ :Rd

x × (0, T ) 
→ M(Rn) is said to be
bounded weakly∗ measurable and 1-periodic if for allF ∈ L1

loc(R
d
x × (0, T );C0(R

n)) the
function

(x, t) 
→
∫
Rn

p

F (x, t,p) dσx,t (p)

is measurable and∫
Rn

p

F (x, t,p) dσx+ei ,t (p) =
∫
Rn

p

F (x − ei , t, p) dσx,t (p)

for i = 1, . . . , d . Here, we use the standard notationσx,t = σ(x, t) as if measuresσx,t

were parametrized by(x, t), and, in line with the notation from [11], we say thatσ ∈
L∞

w (Rd
x × (0, T );M(Rn)).

Problem K (Kinetic formulation of problem(1.1)). Let f0 : R
d
x × Rλ 
→ [0,1] be a mea-

surable function such thatf0 is 1-periodic inx, monotone and right continuous with resp
to λ and

f0(x, λ) = 0 for λ < 0 and f0(x, λ) = 1 for λ � 1. (1.11a)

It is necessary to find a distribution functionf ∈ L∞(Rd
x × (0, T ) × Rλ), a parametrized

non-negative measureσ ∈ L∞
w (Rd

x × (0, T );M(Rλ ×Lq)), and a non-negative defect me
sureM ∈ M(Rd

x × (0, T ) × Rλ) satisfying the following conditions:

(a) Functionf (x, t, λ) is 1-periodic inx, monotone and right continuous inλ ∈ R. More-
over,

f (x, t, λ) = 0 for λ < 0 and f (x, t, λ) = 1 for λ � 1. (1.11b)

In particular, 0� f � 1 a.e. inQ × Rλ. This means that the Stieltjes measureµx,t =
dλf (x, t, λ) is a probability measure onRλ, and sptµx,t ⊂ [0,1].

(b) Parametrized measureσx,t is weakly∗ measurable and 1-periodic inx. It is supported
on [0,1] ×Lq and satisfies the conditions∫

Rλ×Lq

dσx,t (λ,q) = 1,

∫
Q

{ ∫
Rλ×Lq

|q|2 dσx,t (λ,q)

}
dx dt < ∞. (1.11c)

In particular, the function

χ(x, t, s) :=
∫

(−∞,s]×Lq

|q|2 dσx,t (λ,q) (1.11d)

is 1-periodic inx, monotone and right continuous ins, and the Stieltjes measu

dλχ(x, t, λ) is supported on[0,1] for a.e.(x, t) ∈ R

d
x × (0, T ).
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(c) Wheneverg ∈ C1
loc(Rλ), the functionG : (x, t) 
→ ∫

Rλ
g(λ)dλf (x, t, λ) belongs to the

Hilbert spaceL2(0, T ;H) and the equality

A1/2∇xG(x, t) =
∫

Rλ×Lq

g′(λ)q dσx,t (λ, q) (1.11e)

holds for a.e.(x, t) ∈ R
d
x × (0, T ).

(d) MeasureM ∈ M(Rd
x × (0, T ) × Rλ) is non-negative and 1-periodic inx.

(e) Distribution functionf : R
d
x × (0, T ) × Rλ 
→ [0,1] satisfies the equations and initi

conditions

Q × Rλ: ∂tf + divx

(
a′(λ)f v − b′(λ)A∇xf

) + ∂λ

(
b′(λ)∂λχ + M

) = 0,

(1.11f)

Ω × Rλ: f (x,0, λ) = f0(x, λ). (1.11g)

Equations (1.11f) and (1.11g) are understood in the sense of distributions and can be
alently collected into the integral formulation∫

Q×Rλ

{
∂t ζ + a′(λ)v · ∇xζ + b′(λ)divx(A∇xζ )

}
f (x, t, λ) dx dt dλ

+
∫

Q×Rλ

∂λζdM +
∫

Q×Rλ

b′(λ)∂λζ dλχ(x, t, λ) dx dt

+
∫

Ω×Rλ

ζ(x,0, λ)f0(x, λ) dx dλ = 0 (1.11h)

for all 1-periodic inx smooth test functionsζ(x, t, λ) vanishing in some neighborhood
the plane{t = T } and for sufficiently large|λ|.

Remark 2. It is easy to see that the set of solutions to Problem K is convex.

Remark 3. If u is the entropy solution of problem (1.1) with the initial datau0, then it is
easy to see that there exists a solution of Problem K with the initial data

f0(x, λ) = 0 for λ < u0(x) and f0(x, λ) = 1 otherwise (1.12

such thatf (x, t, λ) = 0 for λ < u(x, t) and f (x, t, λ) = 1 otherwise. Vice versa, i
(f,σ,M) is the solution of Problem K with the initial data (1.12) andf attains only val-
ues 0 and 1, thenu(x, t) = sup{λ: f (x, t, λ) = 0} is the entropy solution to problem (1.
with the initial datau0.

The main result of this paper is the following theorem on existence and uniquen
solutions of problem (1.1).

Theorem 4. Wheneveru0 ∈ L∞, problem (1.1) has a unique entropy solutionu ∈

L∞(0, T ;L∞) ∩ L2(0, T ;H).
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The proof relies on the following assertions on solvability and uniqueness of solu
of Problem K. The first of them is proved in Section 3. It guarantees the existenc
solution to Problem K provided with the periodic inx initial dataf0 :Rd

x × Rλ 
→ {0,1}:

Theorem 5. Suppose that the initial distributionf0 : R
d
x × Rλ 
→ [0,1] is periodic inx,

monotone and right continuous inλ, satisfies(1.11a) and

f0(x, λ)
(
1− f0(x, λ)

) = 0 a.e. inR
d
x × Rλ. (1.13)

In other words,f0 attains the values0 and1 only. Then, Problem K has a solution.

In Section 4, we justify the renormalization procedure for the kinetic equation (1.
which is the crucial point of our study. More precisely, we prove the following theore

Theorem 6. For any smooth convex on the interval[0,1] functionϕ there exists a Bore
measureHϕ ∈ C(Rλ ×Q)∗ supported in the strip0� λ � 1 such that the integral inequa
ity ∫

Rλ×Q

ϕ(f )
{
∂t ζ + a′(λ)v · ∇xζ + b′(λ)divx(A∇xζ )

}
dx dt dλ

+
∫

Rλ×Ω

ϕ(f0)ζ(x,0, λ) dx dλ −
∫

Rλ×Q

∂λζdHϕ(x, t, λ) � 0 (1.14)

holds for any1-periodic inx non-negative smooth functionζ(x, t, λ), which vanishes in a
neighborhood of the planet = T and for sufficiently large|λ|.

In Section 5, by means of Theorem 6 we obtain the following theorem.

Theorem 7. Under the assumptions of Theorem5, solutions to Problem K satisfy the equa
ity

f (x, t, λ)
(
1− f (x, t, λ)

) = 0 a.e. inR
d
x × [0, T ] × Rλ. (1.15)

Moreover, if(f,σ,M) and(f ′, σ ′,M ′) are the solutions of Problem K with the same init
dataf0, thenf = f ′ a.e. inQ × Rλ.

It is clear that Theorem 4 is the consequence of Theorems 5 and 7 and Remark 3

2. Preliminaries

In this section, we consider in details the properties of Young measures associate
a sequence of solutionsuε : R

d
x × (0, T ) 
→ [0,1] of problem (1.8), (1.1b), (1.1c). We sta
with the observation that, by the Tartar theorem [14], [11, Chapter 3], there exists a sub-
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sequence still denoted byuε and a family of probability Radon measuresµx,t supported
uniformly on[0,1] such that

g(uε) → ḡ weakly∗ in L∞(Q), ḡ =
∫
Rλ

g(λ)dµx,t (λ) (2.1)

for all g ∈ C(Rλ). The mapping(x, t) 
→ µx,t is weakly∗ measurable and 1-periodic inx.
Set qε := A1/2∇xuε. The vector fieldsqε :Rd

x × (0, T ) 
→ L are measurable and 1
periodic inx. From (1.10) it follows that the sequence(uε,qε) is bounded inL2, which
along with the Ball theorem [2] yields the following lemma.

Lemma 8. There exists a subsequence still denoted by(uε,qε) and a measure-value
1-periodic inx functionσ ∈ L∞

w (Q,M(Rλ × Lq)) such that for all continuous function
g :Rλ ×Lq 
→ R satisfying the growth condition|g(λ,q)| � c(1+ |λ| + |q|)p , 0� p < 2,
we haveg(uε,qε) → ḡ weakly inLr(Q), 1< r � 2/p, ḡ = ∫

Rλ×Lq
g(λ,q) dσx,t (λ,q) for

a.e.(x, t) ∈ Q, and the probability measureσx,t is supported in[0,1] ×Lq .

Lemma 9. Under the above assumptions there exists a mappingν ∈ L1
w(Q;M(Rλ)) and

a functionϕ̄ ∈ L1(Q) such that for allg ∈ C(Rλ), we have∫
Rλ

g(λ)dνx,t (λ) =
∫

Rλ×Lq

g(λ)|q|2 dσx,t (λ,q), (2.2)

∣∣∣∣
∫
Rλ

g(λ)dνx,t (λ)

∣∣∣∣ � ‖g‖C(Rλ)ϕ̄(x, t) for a.e.(x, t) ∈ Q. (2.3)

The mappingν is 1-periodic inx andsptνx,t ⊂ [0,1] for a.e.(x, t) ∈ Q.

In the formulation of the lemma,L1
w(Q;M(Rλ)) denotes the space of weakly∗ mea-

surable mappingsν :Q 
→ M(Rλ) such that for anyF ∈ L∞(Q;C0(Rλ)) the integral∫
Q

| ∫
Rλ

F dνx,t (λ)|dx dt is finite.

Proof. Let a non-negative functionh ∈ C∞
0 (R) be satisfying the conditionssh′(s) � 0,

h(s) = 1 when|s| � 1, h(s) = 0 when|s| � 2. It is clear that|q|2h(n−1|q|) ↗ |q|2, as
n ↗ ∞, and that∫

Q

|qε|2h
(
n−1|qε|

)
dx dt �

∫
Q

|qε|2 dx dt � Cq < ∞.

From this we conclude that non-negative functionsϕn(x, t) = |qε|2h(n−1|qε|), n =
1,2, . . . , satisfy the inequalities

ϕn � ϕn+1 and
∫

ϕn(x, t) dx dt � Cq for n � 1. (2.4)
Q
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Since| · |2h(n−1·) ∈ C(Rλ × Lq), we can assume thatϕn → ϕn weakly∗ in L∞(Q), as
ε ↘ 0, where

ϕn(x, t) =
∫

Rλ×Lq

|q|2h(
n−1|q|)dσx,t (λ,q) for a.e.(x, t) ∈ Q. (2.5)

Inequalities (2.4) implyϕn � ϕn+1 and‖ϕn‖L1(Q) � Cq . By the Fatou theorem, there exis
ϕ̄ ∈ L1(Q) such thatϕn(x, t) ↗ ϕ̄(x, t) a.e. inQ, which along with (2.5) yields∫

Rλ×Lq

|q|2h(
n−1|q|)dσx,t (λ,q) ↗ ϕ̄(x, t)

for a.e.(x, t) ∈ Q. Since|q|2h(n−1|q|) ↗ |q|2, asn ↗ ∞, the Fatou theorem yields∫
Rλ×Lq

|q|2 dσx,t (λ,q) = ϕ̄(x, t) < ∞ a.e.(x, t) ∈ Q. (2.6)

Next, note that for allg ∈ C(Rλ), we have|g(λ)||q|2h(n−1|q|) � ‖g‖C(Rλ)|q|2 and
g(λ)|q|2h(n−1|q|) → g(λ)|q|2, asn ↗ ∞. From this, (2.6), and the Lebesgue domina
convergence theorem we conclude that∫

Rλ×Lq

g(λ)|q|2h(
n−1|q|)dσx,t (λ,q) →

∫
Rλ×Lq

g(λ)|q|2 dσx,t (λ,q), (2.7)

asn ↗ ∞, and that∣∣∣∣
∫

Rλ×Lq

g(λ)|q|2 dσx,t (λ,q)

∣∣∣∣ � ‖g‖C(Rλ)ϕ(x, t). (2.8)

Therefore, the function

Φg : (x, t) 
→
∫

Rλ×Lq

g(λ)|q|2 dσx,t (λ,q) (2.9)

belongs toL1(Q) and satisfies the inequalities∣∣Φg(x, t)
∣∣ � ‖g‖C(Rλ)ϕ(x, t) a.e. inR

d
x × (0, T ). (2.10)

Let E ⊂ R
d
x × (0, T ) be a measurable set with a complement of zero measure suc

ϕ̄(x, t) < ∞ for each(x, t) ∈ E. Whenever(x, t) ∈ E, the mappingg 
→ Φg(x, t) is linear
and continuous onC(Rλ). By the Riesz theorem, there exists a Radon measureνx,t ∈
M(Rλ) such that the identity∫

Rλ

g(λ)dνx,t (λ) = Φg(x, t) (2.11)

holds for all compactly supportedg ∈ C(Rλ) and (x, t) ∈ E. Note that (2.2) and (2.3

follow from (2.9) and (2.10). It remains to prove that sptνx,t ⊂ [0,1]. Choose an arbitrary
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ume
open intervalI ⊃ [0,1] and a non-negative functionη ∈ C(R) such thatη(s) = 0 when
s ∈ [0,1], andη(s) = 1 whens ∈ R \ I . Since 0� uε � 1, we have the identityη(uε) ≡ 0,
which along with Lemma 8 yields

w- lim
ε↘0

η(uε)|qε|2h
(
n−1|qε|

) =
∫

Rλ×Lq

η(λ)|q|2h(
n−1|q|)dσx,t (λ,q) = 0.

From this, (2.7), and (2.8) we conclude that∫
(Rλ\I )×Lq

|q|2 dσx,t (λ,q) �
∫

Rλ×Lq

η(λ)|q|2 dσx,t (λ,q) = 0

for all (x, t) ∈ E and the lemma follows. �
Lemma 10. There exist subsequence(uε,qε) and non-negative Radon measuresM0
and M on R

d
x × Rt × Rλ such thatM0 and M are 1-periodic in x and supported in

R
d
x × [0, T ] × [0,1], and the equalities

lim
ε↘0

∫
Q

g(x, t, uε)
(|qε|2 + ε|∇xuε|2

)
dx dt =

∫
Q×Rλ

g(x, t, λ) dM0, (2.12)

∫
Q×Rλ

g dM0 =
∫
Q

{∫
Rλ

g dνx,t (λ)

}
dx dt +

∫
Q×Rλ

g dM (2.13)

hold for any1-periodic inx functiong ∈ C(Rd
x × (0, T ) × Rλ).

Proof. Let us consider the functionalMε defined by

〈Mε,g〉 =
∫

Rd
x×(0,T )

g(x, t, uε)
(|qε|2 + ε|∇xuε|2

)
dx dt. (2.14)

It follows from (1.10) that∣∣〈Mε,g〉∣∣ � c diam(K)‖g‖C(Rd
x×Rt×Rλ) (2.15)

for every functiong ∈ C(Rd
x × Rt × Rλ) supported in some compactK ⊂ R

d
x × Rt × Rλ.

Moreover,〈Mε,g〉 = 0 for each continuous functiong, which vanishes onRd
x × [0, T ] ×

[0,1]. By the Riesz theorem,Mε is a Radon measure inRd
x × Rt × Rλ supported inRd

x ×
[0, T ]×[0,1]. Clearly, it is 1-periodic inx. After passing to a subsequence, we can ass
that the sequenceMε converges weakly∗ to a Radon measureM0 in R

d
x × Rt × Rλ, as

ε ↘ 0. It is clear that the measureM0 is 1-periodic inx and that sptM0 ⊂ R
d
x × [0, T ] ×

[0,1]. Next, note that the inequality∫
Rd

x×(0,T )

g0(x, t)g1(uε)
(|qε|2 + ε|∇uε|2

)
dx dt

�
∫

g0(x, t)g1(uε)|qε|2h
(
n−1|qε|

)
dx dt
Rd
x×(0,T )
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unc-
holds for all non-negative compactly supported functionsg0 ∈ C(Rd
x × Rt ), g1 ∈ C(Rλ)

and integern � 1. Passing to the limit in both the sides of this inequality, asε ↘ 0, along
a suitable subsequence, we arrive at

〈M0, g0g1〉 �
∫

Rd
x×(0,T )

g0(x, t)

{ ∫
Rλ×Lq

g1(λ)|q|2h(
n−1|q|)dσx,t (λ,q)

}
dx dt.

From this, (2.7), (2.11), and (2.14) we conclude that the inequality

〈M0, g0g1〉 �
∫

Rd
x×(0,T )

g0(x, t)

{∫
Rλ

g1(λ) dνx,t (λ)

}
dx dt (2.16)

holds for all non-negative compactly supported functionsg0 ∈ C(Rd
x × Rt ), g1 ∈ C(Rλ).

On the other hand, the formula〈
M∗, g

〉 = ∫
Rd

x×(0,T )

{∫
Rλ

g(x, t, λ) dνx,t (λ)

}
dx dt ∀g ∈ Cc

(
R

d
x × Rt × Rλ

)

defines a non-negative Radon measure onR
d
x × Rt × Rλ with sptM∗ ⊂ R

d
x × [0, T ] ×

[0,1]. It follows from this and (2.16) that the defect measureM = M0 − M∗ satisfies
the inequality〈M,g0g1〉 ≡ 〈M0, g0g1〉 − 〈M∗, g0g1〉 � 0 for all non-negative function
g0g1 with g0 ∈ Cc(R

d
x × Rt ) and g1 ∈ Cc(Rλ). Note that the linear span of the set

such functions is dense inCc(R
d
x × Rt × Rλ) and, consequently, the inequality〈M,g〉 � 0

holds for all non-negative functionsg ∈ Cc(R
d
x × Rt × Rλ). HenceM � 0, and the lemma

follows. �
The next lemma shows that the measureM0 does not concentrate near the plane{t = 0}.

Lemma 11. MeasureM0 defined in Lemma10 satisfies the limiting relation

lim
τ↘0

∫
Ω×[0,τ ]×Rλ

dM0(x, t, λ) = 0.

Proof. We start with the observation that the functionsuε(· , t), t ∈ [0, T ], ε > 0, are
equicontinuous in the weak topology. Multiplying both the sides of Eq. (1.8) by a f
tion ζ ∈ C∞ and integrating over the cylinderΩ × [0, t], we arrive at∫

Ω

∂tuε(x, t)ζ(x) dx =
∫
Ω

(
vε(x, t)aε

(
uε(x, t)

)) · ∇xζ(x) dx

+
∫
Ω

(
b
(
uε(x, t)

)
divx

(
A∇xζ(x)

)
+ εuε(x, t)∆xζ(x)

)
dx for t ∈ (0, T ). (2.17)

Since‖vε(t)‖H1,1 → ‖v(t)‖H1,1 in L1(0, T ), aε → a uniformly on every interval and

0 � uε � 1, there exist a functionρ ∈ L1(0, T ) and constantsca and cb such that
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of
‖vε(· , t)‖L1(0,T ) � ρ(t), |aε(uε)| � ca , and |b(uε)| � cb. From this and (2.17) we con
clude that∣∣∣∣

∫
Ω

∂tuε(x, t)ζ(x) dx

∣∣∣∣ � ‖ζ‖C2

(
caρ(t) + cb‖A‖ + ε

)
.

Since the embeddingHs,2 ↪→ C2 is compact fors > sd = [d/2] + 5/2, we obtain∥∥∂tuε(· , t)
∥∥

H−s,2 � c(ρ(t) + 1) for t ∈ (0, T ) ands > sd . (2.18)

Hence, the mappingsuε : [0, T ] 
→ H−s,2 are equicontinuous. In particular,uε(t) → u0
in H−s,2 uniformly with respect toε ∈ (0,1), ast ↘ 0. On the other hand, the values
functionsuε(·, t) belong to the interval‖uε‖L∞ � 1, which is a compact subset ofH−s,2.
By the Arcel theorem, the set{uε}ε∈(0,1) is relatively compact inC(0, T ;H−s,2). Hence,
there exists a subsequence still denoted byuε and a functionu∗ ∈ L∞ such thatuε(t) →
u∗(t) in H−s,1 uniformly on the segment[0, T ]. Moreover,u∗(t) → u0 in H−s,2, ast ↘ 0.
Hence,

uε(·, t) → u∗(t) asε ↘ 0 and u∗(t) → u0 ast ↘ 0,

weakly inL2. (2.19)

Fix an arbitrary vectorz ∈ R
d . Multiplying both sides of Eq. (1.8) byuε and integrating

overΩ × (0, T ), we obtain

1

2

∥∥uε(· , t)
∥∥2

L2 +
∫

(Ω+z)×(0,t)

(
b′(uε)|qε|2 + ε|∇xuε|2

)
dx dt = 1

2

∥∥uε(· , t)
∥∥2

L2.

Using (2.14) and noting that the measureMε is supported inRd
x × [0, T ] × [0,1], we can

rewrite this equality in the form

1

2

∥∥uε(· , t)
∥∥2

L2 +
∫

(Ω+z)×(−δ,t)×Rλ

dMε(x, t, λ) = 1

2
‖u0‖2

L2 (2.20)

with an arbitrary positiveδ. SinceMε converges weakly to the measureM0 and the se-
quenceuε(· , t) converges weakly tou∗(· , t), we have∫

(Ω+z)×(−δ,t)×Rλ

dM0(x, t, λ) � lim sup
ε↘0

∫
(Ω+z)×(−δ,t)×Rλ

dMε(x, t, λ).

On the other hand, relations (2.19) imply the inequality∥∥u∗(· , t)∥∥
L2 � lim inf

ε↘0

∥∥uε(· , t)
∥∥

L2,

which along with (2.20) gives∫
dM0(x, t, λ) � 1

2
‖u0‖2

L2 − 1

2

∥∥u∗(· , t)∥∥2
L2 for everyz ∈ R

d .
(Ω+z)×(−δ,t)×Rλ
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It remains to note that

lim inf
t↘0

∥∥u∗(· , t)∥∥
L2 � ‖u0‖L2,

and the lemma follows. �
Let us introduce the distribution functionf of the Young measureµx,t ,

f (x, t, λ) =
∫
Rs

1s�λ dµx,t (s). (2.21)

We observe that the distribution functionf satisfies all conditions in item (a) of the form
lation of Problem K. The next lemma establishes the relation between the functionf and
the Young measureσx,t .

Lemma 12. The identity

A1/2∇xf (x, t, λ) = −
∫
Lq

q dσx,t (λ,q)

holds true in the sense of distributions.

Proof. Considerϕ(uε) → ϕ∗ weakly∗ in L∞(Q), A1/2∇xϕ(uε) → G∗ weakly inL2(Q),
asε ↘ 0, whereϕ is an arbitrary smooth function. For an arbitrary smooth 1-periodicx
vector-functionζ , one has both∫

Q

ζ · A1/2∇xϕ(uε) dx dt −→
ε↘0

∫
Q×Rλ

divx

(
A1/2ζ

)
ϕ′(λ)f (x, t, λ) dx dt dλ

and ∫
Q

ζ · A1/2∇xϕ(uε) dx dt −→
ε↘0

∫
Q×Rλ×Lq

ζϕ′(λ) · q dσx,t (λ,q) dx dt,

which completes the proof.�

3. Proof of Theorem 5

Choose an arbitrary smooth functionϕ ∈ C∞
0 (R). Let

Φ(λ) = −
+∞∫
λ

ϕ ds, Ψε(λ) = −
+∞∫
λ

a′
εϕ ds, w(λ) = −

+∞∫
λ

b′ϕ ds. (3.1)

Multiplying both sides of Eq. (1.8) byϕ(uε)η(x, t), whereη ∈ C∞(Q), η(x + ei , t) =

η(x, t), andη(x, T ) = 0, and integrating overQ, we obtain
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to the
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t
is

ition
∫
Q

{
Φ(uε)∂tη + Ψε(uε)vε · ∇xη + w(uε)divx(A∇xη)

+ εΦ(uε)∆xη − Φ ′′(uε)b
′(uε)

∣∣A1/2∇xuε

∣∣2η − εΦ ′′(uε)|∇xuε|2η
}
dx dt

+
∫
Ω

Φ(u0ε)η(x,0) dx = 0.

As ε ↘ 0, on the strength of Lemmas 8–10, we derive∫
Q×Rλ

{
Φ(λ)∂tη + Ψ (λ)v · ∇xη + w(λ)divx(A∇xη)

}
dµx,t (λ) dx dt

−
∫

Q×Rλ

ηΦ ′′(λ)b′(λ) dνx,t (λ) dx dt

−
∫

Q×Rλ

Φ ′′(λ)η dM +
∫
Ω

Φ(u0)η(x,0) dx = 0, (3.2)

whereΨ (λ) = − ∫ +∞
λ

a′(s)ϕ(s) ds, and conclude that the parametrized measureσx,t and
the defect measureM satisfy conditions of items (b) and (d) of formulation of Problem
Substituting (3.1) into (3.2), using the notions of the Stieltjes integrals with respect
measuresdλf anddλχ (see items (a) and (b) of the formulation of Problem K) and
equality

∫
Rλ

( +∞∫
λ

ζ(s) ds

)
dλf (x, t, λ) =

∫
Rλ

ζ(λ)f (x, t, λ) dλ

that holds for a.e.(x, t) ∈ R
d × [0, T ] for an arbitraryζ ∈ C0(R) on the strength of the

theory of the Stieltjes integral, we arrive at the identity∫
Q×Rλ

(
∂t (ϕη) + a′(λ)v · ∇x(ϕη) + b′(λ)divx

(
A∇x(ϕη)

))
f (x, t, λ) dx dt dλ

+
∫

Ω×Rλ

ϕη0f0 dx dλ +
∫

Q×Rλ

∂λ(ϕη)dM

+
∫

Q×Rλ

b′(λ)∂λ(ϕη)dλχ(x, t, λ) dx dt = 0. (3.3)

The linear span of{ϕη} is dense inC∞(Rλ × Q), therefore, (3.3) is valid with a tes
function ζ(λ, x, t) on the place of(ϕη). Thus, item (e) of formulation of Problem K
fulfilled.

In order to finish the justification of the theorem, it remains to notice that the cond

in item (c) of the formulation of Problem K holds on the strength of Lemma 12.
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4. Proof of Theorem 6

The proof is divided into five steps.

Step 1. The smoothing of the kinetic equation. Introduce the mollifierω ∈ C∞
0 (R),

‖ω‖L1(R1) = 1 that is a non-negative smooth function with a compact support on[0,1].
For any continuous functionf :Rd

x × R
+
t × Rλ 
→ R we denote

fs(x, t, ·) = ωs ∗ f (x, t, ·), fτ (x, · , λ) = ωτ ∗ f (x, · , λ), and

fh(· , t, λ) = ωh ∗ · · · ∗ ωh ∗ f (· , t, λ).

Further we writefαβ instead of(fα)β for α,β = h, s, τ . Denote byQτ the cylinderQτ =
Q ∩ {τ < t < T − τ }. Set

ζ(x, t, λ) = ωshτ (x̄ − x, λ̄ − λ, t̄ − t),

where

ωs(λ) = 1

s
ω

(
λ

s

)
, ωh(x) = 1

hd
ω

(
x1

h

)
· · ·ω

(
xd

h

)
, ωτ = 1

τ
ω

(
t

τ

)
,

and

ωshτ = ωsωhωτ .

Further we also writeωαβ instead ofωαωβ for α,β = h, s, τ .
Substitutingζ(x, t, λ) on the place of a test function into (1.11h), we obtain the follo

ing equation for the smoothed distribution function, where we writeλ, x, andt instead of
λ̄, x̄, andt̄ :

∂tfshτ + a′(λ)v · ∇xfshτ − b′(λ)divx(A∇xfshτ ) + ∂λ

(
b′(λ)∂λχshτ + Mshτ

)
= R

(shτ)
1 + R

(shτ)
2 + R

(shτ)
3 in Qτ × Rλ, (4.1)

where the rest terms are given by the formulas

R
(shτ)
1 = divx

(
a′(λ)vfshτ

) − divx(a
′vf )shτ ,

R
(shτ)
2 = ∂λ

(
b′∂λχshτ − (b′∂λχhτ )s

)
,

R
(shτ)
3 = −b′(λ)divx(A∇xfshτ ) + (

b′ divx(A∇xfhτ )
)
s
.

Step 2. Renormalization of the smoothed kinetic equation. Let ϕ ∈ C2(R) be an arbitrary
convex on[0,1] function. Multiplying both sides of (4.1) byϕ′(fshτ ), we obtain the equa
tion

∂tϕ(fshτ ) + a′(λ)v · ∇xϕ(fshτ ) − b′(λ)divx

(
A∇xϕ(fshτ )

)
(shτ) (shτ) (shτ)
− ∂λH − G − I = 0, (4.2)
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1, §3,

of
where

H(shτ) = −ϕ′(fshτ )
(
b′(λ)∂λχshτ + Mshτ

)
,

I (shτ) = ϕ′′(fshτ )
{
b′(λ)∂λfshτ ∂λχshτ + Mshτ ∂λfshτ − b′(λ)

∣∣A1/2∇xfshτ

∣∣2},
G(shτ) = ϕ′(fshτ )

(
R

(shτ)
1 + R

(shτ)
2 + R

(shτ)
3

)
.

Lemma 13. InequalityI (shτ) � 0 holds inQτ × Rλ.

Proof. We haveb′ > 0, ϕ′′(fshτ ) � 0, asϕ is convex on[0,1], and(∂λfshτ )Mshτ � 0, as
f is monotone non-decreasing with respect toλ, and asM is non-negative. Therefore,
suffices to prove that

∂λfshτ ∂λχshτ − ∣∣A1/2∇xfshτ

∣∣2 � 0. (4.3)

On the strength of items (a)–(c) of the formulation of Problem K, we have

∂λfshτ (x, t, λ) =
∫

R
d+1
y,ξ

{ ∫
Rζ ×Lq

ωshτ (x − y, t − ξ,λ − ζ ) dσy,ξ (ζ,q)

}
dy dξ, (4.4)

∂λχshτ =
∫

R
d+1
y,ξ

{ ∫
Rζ ×Lq

ωshτ (x − y, t − ξ,λ − ζ )|q|2 dσy,ξ (ζ,q)

}
dy dξ, (4.5)

A1/2∇xfshτ = −
∫

R
d+1
y,ξ

{ ∫
Rζ ×Lq

ωshτ (x − y, t − ξ,λ − ζ )q dσy,ξ (ζ,q)

}
dy dξ. (4.6)

Using (4.4)–(4.6), we reduce inequality (4.3) to the equivalent form∫
R

d+1
y,ξ

{ ∫
Rζ ×Lq

ωshτ |q|2 dσy,ξ (ζ,q)

}
dy dξ

∫
R

d+1
y,ξ

{ ∫
Rζ ×Lq

ωshτ dσy,ξ (ζ,q)

}
dy dξ

−
( ∫

R
d+1
y,ξ

{ ∫
Rζ ×Lq

ωshτq dσy,ξ (ζ,q)

}
dy dξ

)2

� 0. (4.7)

On the strength of the version of Hölder’s inequality (see, for example, [15, Chapter
formula (5)]), we conclude that (4.7) holds true.�

On the strength of Lemma 13, we obtain the following inequality from (4.2):

∂tϕ(fshτ ) + a′(λ)v · ∇xϕ(fshτ ) − b′(λ)divx

(
A∇xϕ(fshτ )

)
− ∂λH

(shτ) − G(shτ) � 0. (4.8)

Step 3. Passage to the limit, ass ↘ 0. We havefshτ → fhτ strongly inLr
loc(Rλ × Qτ) for

any r � 1 and weakly∗ in L∞(Rλ × Qτ), ass ↘ 0, due to the well-known properties

mollifying kernels.
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in (4.8)
Lemma 14. Functionfhτ (x, t, λ) satisfies in the cylinderQτ × Rλ the inequality

∂tϕ(fhτ ) + a′(λ)v · ∇xϕ(fhτ ) − b′(λ)divx

(
A∇xϕ(fhτ )

)
− ∂λH

(hτ) − G(hτ) � 0 (4.9)

in the sense of distributions. HereH(hτ) is a Radon measure inQτ × Rλ, such that∥∥H(hτ)
∥∥

C(Qτ ×Rλ)∗ � c, sptH(hτ) ⊂ Qτ × [0,1]λ; (4.10)

G(hτ) = ϕ′(fhτ )R
(hτ)
1 , R

(hτ)
1 = divx

(
a′(λ)vfhτ

) − divx(a
′vf )hτ . (4.11)

Proof. For any integer non-negativeα and β the functions∂α
x ∂

β
t fshτ are uniformly

bounded with respect tos and converge a.e. inQτ × Rλ to ∂α
x ∂

β
t fhτ . Hence, we apply

the Lebesgue dominated convergence theorem to the sum of the first three terms
and conclude that this expression converges inL1

loc(Qτ × Rλ) to

∂tϕ(fhτ ) + a′(λ)v · ∇xϕ(fhτ ) − b′(λ)divx

(
A∇xϕ(fhτ )

)
,

ass ↘ 0. The same arguments give

ϕ′(fshτ )R
(shτ)
1 → ϕ′(fhτ )R

(hτ)
1

in L1
loc(Qτ × Rλ), as s ↘ 0. The passage to the limit in the summands∂λH

(shτ) and

ϕ′(fshτ )(R
(shτ)
2 + R

(shτ)
3 ) is based on the following lemma.

Lemma 15.

(i) The family of functionsb′(λ)∂λχshτ + Mshτ is uniformly bounded inL1(Qτ × Rλ)

with respect tos, h, andτ .
(ii) For any fixedh, τ > 0 functionχhτ (x, t, λ) is Lipschitz continuous on the setQτ ×Rλ.

Proof. Let us integrate Eq. (4.1) over the interval(−∞, λ0) with respect toλ. Sinceχ and
M vanish forλ < 0, we have

b′(λ0)∂λ0χshτ (x, t, λ0) + Mshτ (x, t, λ0) = Φ(shτ)(x, t, λ0), (4.12)

where

Φ(shτ)(x, t, λ0) := −
λ0∫

−∞

(
b′(λ)divx(A∇xfshτ ) − ∂tfshτ

− a′(λ)v · ∇xfshτ + R
(shτ)
1 + R

(shτ)
2 + R

(shτ)
3

)
dλ. (4.13)

Sinceb and χshτ are monotonous non-decreasing with respect toλ and sinceMshτ is
non-negative, we have thatΦ(shτ) � 0. Thus, we get

‖b′∂λ0χshτ + Mshτ‖L1(Qτ ×Rλ) =
∫

Φ(shτ)(x, t, λ0) dx dt dλ0. (4.14)
Rλ0×Qτ
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We calculate the right-hand side integral explicitly using integration by parts with re
to x and periodicity property in the terms containingb′(λ)divx(A∇xfshτ ), a′(λ)v ·∇xfshτ ,
R

(shτ)
1 , andR

(shτ)
3 (all these integrals are equal to zero), and using integration by parts

respect toλ in the term containingR(shτ)
2 . Thus, we obtain∫

Rλ0×Qτ

(
Φ(shτ)(x, t, λ0) + {

b′′(λ0)χshτ − (b′′χhτ )s
})

dλ0 dx dt

=
∫

Rλ0×Ω

λ0∫
−∞

{
fshτ (x, T − τ,λ) − fshτ (x, τ, λ)

}
dλdx dλ0

+
∫
Qτ

{
b′(1+ s)χshτ (x, t,1+ s) − (b′χhτ )s(x, t,1+ s)

}
dx dt

−
∫
Qτ

{
b′(−s)χshτ (x, t,−s) − (b′χhτ )s(x, t,−s)

}
dx dt. (4.15)

Computing the last two integrals, we take into account thatλ 
→ χ(x, t, λ), as well as
λ 
→ f (x, t, λ), is a constant function on(−∞,0) and on[1,+∞) for fixed x andt and
that the support of the regularization kernelωs(λ−ξ) lies in the interval{λ−s � ξ � λ+s}
for any fixedλ. On the strength of these facts together with the propertiesb ∈ C2

loc(R) and
f ∈ L∞(Q × Rλ), from (4.14) and (4.15) we deduce

‖b′∂λ0χshτ + Mshτ‖L1(Qτ ×Rλ) � c∗, (4.16)

wherec∗ does not depend ons, h, andτ . Thus, assertion (i) of the lemma is proved.
Now, let us prove that, ifs is less than some fixed values∗, then the bound

Φ(shτ)(x, t, λ0) � c∗∗(h, τ ) (4.17)

holds for any fixedh, τ > 0 for all (x, t, λ0) ∈ R
d
x × [0, T ] × Rλ. Equality (4.13) along

with the well-known properties of the mollifying kernels implies the estimate

Φ(shτ)(x, t, λ0) � c(1)∗∗ (h, τ ) +
∣∣∣∣∣

λ0∫
−∞

R
(shτ)
2 dλ

∣∣∣∣∣, (4.18)

wherec
(1)∗∗ does not depend ons, x, t , andλ0. Using Taylor’s expansion

b′(λ0) − b′(ξ) = b′′(ξ)(λ0 − ξ) + ρ(λ0, ξ),
∣∣ρ(λ0, ξ)

∣∣ � cρ |λ0 − ξ |2, (4.19)

we represent

λ0∫
−∞

R
(shτ)
2 dλ = b′(λ0)∂λ0χshτ − (b′∂λ0χhτ )s

=
1∫
ρ̄(ξ)

(
χhτ (x, t, λ0) − χhτ (x, t, λ0 − sξ)

)
dξ
0



720 P.I. Plotnikov, S.A. Sazhenkov / J. Math. Anal. Appl. 304 (2005) 703–724

e

low-
+
∫
Rξ

ωs(λ0 − ξ)ρ(λ0, ξ)χhτ (x, t, ξ) dξ, (4.20)

whereρ̄(λ) = ω′(λ)λ+ω(λ),
∫

Rλ
ρ̄(λ) dλ = 0. As sptω ⊂ [0,1], maxω = 1, and formulas

(1.11c) and (1.11d) take place, the bound

χhτ (x, t, λ) � 1

hd

1

τ

∫
|y−x|�h

∫
|ζ−t |�τ

χ(y, ζ, λ) dy dζ � c(2)∗∗ (h, τ ) (4.21)

is valid for all(x, t, λ) ∈ R
d
x ×[0, T ]×Rλ with a constantc(2)∗∗ that does not depend onx, t ,

andλ. Also, in view of (4.19) we observe that∣∣∣∣
∫
Rξ

ωs(λ0 − ξ)ρ(λ0, ξ)χhτ (x, t, ξ) dξ

∣∣∣∣ � cρ s

s∫
−s

χhτ (x, t, ξ) dξ. (4.22)

Aggregating (4.18), (4.20)–(4.22), we conclude that (4.17) holds true.
Next, integrating both sides of (4.12) with respect toλ0 over the interval[λ′, λ′′] (λ′ <

λ′′), we derive

χshτ (x, t, λ′′) − χshτ (x, t, λ′) =
λ′′∫

λ′

Φ(shτ)(x, t, λ0) dλ0

b′(λ0)
−

λ′′∫
λ′

Mshτ (x, t, λ0) dλ0

b′(λ0)
.

As χshτ is monotone with respect toλ, Mshτ is non-negative,b′ > 0, and (4.17) holds, w
conclude that

0� χshτ (x, t, λ′′) − χshτ (x, t, λ′) �
(

c∗∗(h, τ )

minλ0∈[0,1]b′(λ0)

)
|λ′′ − λ′|. (4.23)

Passing to the limit, ass ↘ 0, from (4.23) we obtain

0� χhτ (x, t, λ′′) − χhτ (x, t, λ′) �
(

c∗∗(h, τ )

minλ0∈[0,1]b′(λ0)

)
|λ′′ − λ′|,

which completes the proof of assertion (ii).�
Assertion (i) of Lemma 15 immediately implies the bound∥∥H(shτ)

∥∥
L1(Rλ×Qτ )

� max
κ∈[0,1]

∣∣ϕ′(κ)
∣∣c∗ = c, (4.24)

wherec does not depend ons, h, andτ . Thus,Hshτ → Hhτ weakly∗ in C(Rλ × Qτ)
∗, as

s ↘ 0, the bound (4.10) holds true, and the support ofHhτ lies in the strip{0 � λ � 1}, as
the supports of both∂λχ andM lie there.

Now, in order to complete the verification of Lemma 14, it suffices to prove the fol
ing lemma.

Lemma 16. For anyζ ∈ C∞
0 (Rλ × Qτ),∫

ζϕ′(fshτ )
(
R

(shτ)
2 + R

(shτ)
3

)
dx dt dλ → 0, ass ↘ 0.
Rλ×Qτ
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ws
, the
Proof. We have∫
Qτ ×Rλ

ζϕ′(fshτ )
(
R

(shτ)
2 + R

(shτ)
3

)
dx dt dλ

=
∫

Qτ ×Rλ

{
divx

(
A∇x

(
ζϕ′(fshτ )

))
F s(x, t, λ)

+ [
ϕ′(fshτ )∂λζ + ζϕ′′(fshτ )∂λfshτ

]
Ψ s(x, t, λ)

}
dx dt dλ,

where

F s(x, t, λ) = b′fshτ − (b′fhτ )s, Ψ s(x, t, λ) =
λ∫

−∞
R

(shτ)
2 (x, t, λ̃) dλ̃.

Recall that

0� fshτ � 1 and

∞∫
−∞

∣∣∂λfshτ (x, t, λ)
∣∣dλ = 1.

Hence,∣∣∣∣
∫

Qτ ×Rλ

ζϕ′(fshτ )
(
R

(shτ)
2 + R

(shτ)
3

)
dx dt dλ

∣∣∣∣
� c(ζ,ϕ, τ,h) sup

(x,t,λ)∈sptζ

(∣∣Ψ s(x, t, λ)
∣∣ + ∣∣F s(x, t, λ)

∣∣).
This estimate implies that it is sufficient to prove thatF s → 0 andΨ s → 0 uniformly on
any compact subset ofQτ ×Rλ, ass ↘ 0. The first of these limiting relations follows from
the representation

F s(x, t, λ) =
∫
Rξ

ωs(λ − ξ)
(
b′(λ) − b′(ξ)

)
fhτ (x, t, ξ) dξ,

the bound|fhτ | � 1, and Taylor’s expansion (4.19). The second limiting relation follo
from (4.20), (4.22), and the fact that, on the strength of assertion (ii) of Lemma 15
limiting relations

1∫
0

ρ̄(ξ)
(
χhτ (x, t, λ) − χhτ (x, t, λ − sξ)

)
dξ → 0 and

cρs

s∫
−s

χhτ (x, t, ξ) dξ → 0

hold true, ass ↘ 0. �
�
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mi-
Step 4. Passage to the limit, asτ ↘ 0.

Lemma 17. Functionfh(x, t, λ) satisfies the integral inequality∫
Q×Rλ

ϕ(fh)
{
∂t ζ + a′(λ)v · ∇xζ + b′(λ)divx(A∇xζ )

}
dx dt dλ

+
∫

Ω×Rλ

ϕ(f0h)ζ(x,0, λ) dx dλ −
∫

Q×Rλ

∂λζ dH(h)(x, t, λ)

+
∫

Q×Rλ

ζG(h) dx dt dλ � 0, (4.25)

whereζ(x, t, λ) is a non-negative1-periodic inx smooth function vanishing fort = T and
sufficiently largeλ; H(h) is a Radon measure inQ × Rλ such that∥∥H(h)

∥∥
C(Q×Rλ)∗ � c2, sptH(h) ⊂ Q × [0,1]λ, (4.26)

G(h) = ϕ′(fh)
{
divx

(
a′(λ)vfh

) − divx

(
a′(λ)vf

)
h

}
. (4.27)

Proof. Fix an arbitrary smallt0 ∈ (0, T ) and assume thatτ < t0. Since∂α
x fhτ converges to

∂α
x fh in Lr

loc(Qt0 ×Rλ) for any integer non-negativeα and for anyr � 1, and sincefhτ (t0)

converges tofh(t0) in Lr
loc(Ω × Rλ) for almost everyt0, we conclude thatG(hτ) → G(h)

in L1
loc(Qt0 × Rλ) andϕ(fhτ (t0)) → ϕ(fh(t0)) in L1

loc(Ω × Rλ), asτ ↘ 0.
Passing to the limit in (4.9), asτ ↘ 0, we derive the inequality∫

Qt0×Rλ

ϕ(fh)
{
∂t ζ + a′(λ)v · ∇xζ + b′(λ)divx(A∇xζ )

}
dx dt dλ

+
∫

Ω×Rλ

ϕ
(
fh(x, t0, λ)

)
ζ(x, t0, λ) dx dλ

−
∫

Qt0×Rλ

∂λζ dH(h) +
∫

Qt0×Rλ

ζG(h) dx dt dλ � 0, (4.28)

where measureH(h) is the weak* limit inC(Q × Rλ)
∗ of H(hτ) andζ(x, t, λ) is an arbi-

trary 1-periodic inx smooth test function which vanishes fort ∈ [T − t0, T ].
Recall thatϕ is a continuous convex on[0,1] function and thatfh(t0) converges

weakly∗ in L∞(Ω × Rλ) to f0h, due to Lemma 11. On the strength of the lower se
continuity property, this yields

lim inf
t0↘0

∫
Ω×Rλ

ζ(t0)ϕ
(
fh(t0)

)
dx dλ �

∫
Ω×Rλ

ζ(0)ϕ(f0h) dx dλ.
Using this inequality and passing to the limit in (4.28), ast0 ↘ 0, we obtain (4.25). �
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Step 5. Passage to the limit, ash ↘ 0. In view of the properties of the mollifying kernel
we have

ϕ(fh) → ϕ(f ) in L
p

loc(Rλ × Q), ϕ(f0h) → ϕ(f0) in L
p

loc(Rλ × Ω) (4.29)

∀p � 1, ash ↘ 0. On the strength of the bound (4.26), the limiting relation

H(h) → Hϕ weakly∗ in C(Rλ × Q)∗ (4.30)

takes place. On the strength of the properties ofH(h) stated in Lemma 17, measureHϕ has
the properties from the formulation of Proposition 6. Finally,

G(h) → 0 in L1
loc(Q × Rλ), ash ↘ 0, (4.31)

on the strength of [4, Lemma II.1] and (4.29). Using (4.29)–(4.31), we fulfill the limi
transition, ash ↘ 0, in (4.25) and obtain (1.14). Theorem 6 is proved.

5. Proof of Theorem 7

Proof of the first part of the theorem, i.e., of the assertion on the structure of solu
of Problem K, is based on the special choice of test functionsζ andϕ in the renormalized
inequality (1.14): we take

ϕ(f ) = f (f − 1), (5.1)

andζ(x, t, λ) = ζ1(λ)ζ2(t) such that

ζ1 is non-negative and ζ1 = 1 on[0,1], (5.2)

ζ2 is non-negative, ζ2(T ) = 0 and ζ ′
2 < 0 for t < T . (5.3)

It is easy to see that such choice ofϕ andζ makes sense. Substituting these functions
(1.14) and observing that∇xζ = 0, ϕ(f0) = 0, and that∫

Q×Rλ

∂λζ dHϕ(x, t, λ) = 0

(due to (5.2) and sptH ⊂ (Q × [0,1]λ)), we see that (1.14) takes the form∫
Q×[0,1]λ

ζ1ϕ(f )∂t ζ2 dx dt dλ � 0.

In view of (5.1), (5.3), and point (a) of the formulation of Problem K, this inequality imp
ϕ(f ) ≡ 0, which yields thatf (x, t, λ) attains one of only two values, either zero or one
almost every point(x, t, λ) ∈ [0,1] × Q.

The second assertion of the theorem is true due to Remark 2 and to the first asse
the theorem.

We end our paper by the remark that, sincef is the distribution function of the Youn
measureµx,t and sincef (x, t, λ) = 0 for λ < u(x, t) andf (x, t, λ) = 1 for λ � u(x, t)

due to Theorem 7 and Remark 3, we have thatµx,t is the Dirac measure onRλ centered a
the pointλ = u(x, t) for a.e.(x, t) ∈ Q. On the strength of [11, Chapter 3, Theorem 2.3
this yields that the sequence of solutionsuε of problem (1.8), (1.1b), (1.1c) converges

the entropy solutionu strongly inL1, asε ↘ 0.
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[11] J. Malek, J. Něcas, M. Rokyta, M. Ružička, Weak and Measure-Valued Solutions to Evolutionary PD
Chapman & Hall, London, 1996.

[12] K. Millsaps, K. Pohlhausen, Heat transfer to Hagen–Poiseuille flows, in: J.B. Diaz, L.E. Payne
Proceedings of the Conference on Differential Equations, University of Maryland, March 17–19,
University of Maryland Book Store, 1956, pp. 271–294.

[13] B. Perthame, Uniqueness and error estimates in the first order quasilinear conservation laws via th
entropy defect measure, J. Math. Pure Appl. 77 (1998) 1055–1064.

[14] L. Tartar, Compensated Compactness and Applications to Partial Differential Equations, Res. Notes
vol. 39, Pitman, Boston, 1975, pp. 136–211.
[15] K. Yosida, Functional Analysis, Springer-Verlag, New York, 1980.


