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In order to study weak limits of quadratic expressions of oscillatory solutions of partial differen-
tial equations, there was proposed a construction of H-measures defined on the space of positions
and frequencies. The present paper is devoted to the investigation of the Tartar equation

∂tµt +
2∑

i=1

vi∂xiµt +
2∑

i,j=1

∂y(µtYij∂xivj) = 0,

which describes the evolution of H-measure µt associated with a sequence of oscillatory solutions
of the linear transport equation

∂tρ +
2∑

i=1

vi∂xiρ = 0

in cases when a given solenoidal velocity field v(x, t) is sufficiently smooth. Here, (t,x, y) ∈
(0, T ) × Ω × S1, 0 < T < +∞, Ω is a bounded open subset of R2 and S1 is the unit circle in R2,
given coefficients Yij = Yij(y) are infinitely smooth.

Assuming that v belongs to L2(0, T ; H1
0 (Ω)) we establish the well posedness of Cauchy problem

for the Tartar equation in the same measure class as the H-measures are in. For this purpose,
we develop and use an extension of the theory of Lagrange coordinates for a case of non-smooth
solenoidal velocity fields.

1 Introduction

1.1 Foreword

The linear transport equation of the form

∂tρ(x, t) + v(x, t) · ∇xρ(x, t) = 0 (1.1)
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is a part of a large variety of mathematical models of continuum mechanics. Once (1.1) allows
for a sequence of highly oscillatory solutions, there arises a question of studying an evolution
of such oscillations. Assuming, in line with later considerations in the present paper, that a
sequence of solutions {ρε(x, t)}ε>0 is defined in the cylinder Ω × [0, T ] (Ω ⊂ R2, T < +∞)
and tends to some limit ρ∗ weak* in L∞(Ω × [0, T ]) as ε → 0, this question amounts to
asking to describe the set of weak limits f ∗(x, t) =w-lim

ε→0
f(ρε(x, t)) for all continuous f .

There does not exist a universal method for the investigation of all problems like this.
Each of the existing approaches covers a certain class of situations. The focus of the present
work is on H-measures, proposed by Tartar in [26] and by Gerárd in [10] (Gerárd called these
objects microlocal defect measures). H-measures contain information about weak limits of
sequences {ρεϕ1A[ϕ2ρε]}, where A is an arbitrary pseudodifferential operator of zero order
and ϕ1, ϕ2 are arbitrary compactly supported continuous in Ω functions. It is shown in [10],
[26, §4.2] and [27] that this tool can be successfully applied for studying the limit regimes
appearing as ε → 0 within the frameworks of models describing a motion of continuous media
having either small asymptotic or shear structures. Also, a set of compactness results can be
obtained by the systematic use of H-measures (as in [17]–[19]) for sequences of oscillatory
solutions of quasilinear hyperbolic equations of the first order.

Whenever an object like H-measures is used in problems concerning oscillations, it is
strongly desirable to describe its evolution on a macroscopic level. Usually this means to
obtain an evolutionary equation independent of ε, such that the considered object solves it,
and thus can be determined directly from the data given at the time t = 0 without shifting to
the microscopic level and dealing with the sequence {ρε(x, t)}.

The present paper is devoted to the analysis of the equation that describes the evolution
of H-measures associated with a sequence of solutions of (1.1). Here, it is called the Tartar
equation, in line with the original idea on transport properties of H-measures that was pro-
posed and developed by Tartar in [26, §3]. The precise notions of H-measures and the Tartar
equation will be given in §1.2. Our research is somewhat similar to that involving the use of
the concepts of Young measures and Wigner distributions. These tools are very similar to
H-measures and are used to answer questions concerning the appearance of oscillatory solu-
tions of partial differential equations (PDEs). In many cases, Young measures [32] provide
the best means of investigating the behaviour of weakly convergent sequences under super-
positions of nonlinearities, as they may have a good structure and even lead to the identity
f ∗(x, t) = f(ρ∗(x, t)) a.e. in Ω× [0, T ]. Examples of such situations and the corresponding
transport properties of Young measures can be found in [5], [7], [14]–[16], [24]–[27]. Wigner
distributions [31] are intended, in particular, for holding information about weak continuity
properties of quadratic forms on spaces of solutions of linear hyperbolic systems [3]. There-
fore, Wigner distributions are a good tool for analyzing the transport of wave energy density
in the cases when such systems describe wave motions possessing high-frequency asymptotics
[20].

We end our foreword by outlining the notations of the paper. From now on, we suppose
that Ω is a bounded open subset of R2 with a smooth boundary ∂Ω, QT = Ω × [0, T ],
0 < T < +∞; S1 is the unit circle in R2. We denote ∂i = ∂/∂xi (i = 1, 2), ∂t = ∂/∂t,
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∂y = ∂/∂y, where x = (x1, x2), t, and y are elements of the sets Ω, [0, T ], and S1, respectively,
∇xa = (∂1a, ∂2a); ∇xa = ‖∂iaj‖i,j=1,2 and divxa = ∂1a1 + ∂2a2. If a satisfies divxa = 0,
then a is called a solenoidal vector. a ◦ b denotes that function b is under superposition of
functions a; the same notation is used for operators. A : B represents the sum

2∑
i,j=1

AijBij

and (ϕ1 ∗ ϕ2)(x) =
∫
R2 ϕ1(x − y)ϕ2(y)dy is a convolution of the functions ϕ1 and ϕ2.

Functions defined merely on Ω and undergoing integration with respect to x over R2 are
supposed to be extended outside Ω by zero.

The other notations in the paper either do not differ from well-known and commonly
accepted ones or are to be introduced as soon as it is necessary.

1.2 Notions of H-measures and the Tartar equation

The definition of H-measures is based on the following fundamental theorem [26, theorem
1.1 and corollary 1.2].

Theorem H (Existence of H-measures). Let Uε → 0 in L2(Ω) weakly as ε → 0. Then,
after extracting a subsequence (for which the index ε is preserved), there exists a non-negative
Borel measure µ on Ω×S1, such that, for all compactly supported (in Ω) continuous functions
ϕ1, ϕ2, and every pseudodifferential operator A : L2(R2) → L2(R2) of zero order, one has

〈µ, aϕ1ϕ2〉 = lim
ε→0

∫

Ω

ϕ1UεA[ϕ2Uε]dx, (1.2)

where a ∈ C(S1) is the principal symbol of A.

We remark that the linear span of the set {aϕ1ϕ2} is dense in C0(Ω) × C(S1). Recall
that in terms of the Fourier transform F ,

F [u](ξ) =

∫

R2

exp(2πix · ξ)u(x)dx,

the operator A is defined by the formula F [A[u]](ξ) = a(ξ/|ξ|)F [u](ξ). Thus, due to Parse-
val’s theorem, the identity (1.2) has the form

〈µ, aϕ1ϕ2〉 = lim
ε→0

∫

R2

F [ϕ1Uε](ξ) a(ξ/|ξ|)F [ϕ2Uε](ξ)dξ

Here, the bar denotes complex conjugation.

Definition 1.1. The measure µ is called the H-measure associated with the extracted sub-
sequence of {Uε}.
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Now, suppose that coefficients v1, v2 in (1.1) are in C1(QT ) and a sequence ρε(x, t) of
solutions of (1.1) converges in L∞(QT ) weak* to a limit ρ∗(x, t) as ε → 0. The supposition of
existence of such a sequence makes sence because of the theory of linear transport equations
(for details see lemma 2.1). Consider a family of H-measures {µt} associated with the
extracted subsequence of {ρε−ρ∗}, depending on t. Evidently, µt is defined for almost every
t ∈ [0, T ]. Similarly to [26, Theorem 3.4], one establishes that µt solves the equation

∫ T

0

〈µt, ∂tΦ + {v1ξ1 + v2ξ2 , Φ}+ Φdivxv〉dt + 〈µt|t=0, Φ|t=0〉 = 0, (1.3)

where (t, x, ξ) ∈ [0, T ] × Ω × R2, Φ = Φ(t,x, ξ/|ξ|) is an arbitrary test function of a class
C1([0, T ] × Ω × S1), satisfying Φ|t=T = 0 and the Poisson bracket has the form {α, β} =
∇ξα · ∇xβ −∇xα · ∇ξβ. We remark that differentiating a test function Φ with respect to ξi

(i = 1, 2) does not output integrands off the domain of definition of measure µt because the
Poisson bracket in (1.3) is continuous in [0, T ]×Ω×S1 and homogeneous of zero order with
respect to the variable ξ.

If we parametrize the unit circle S1 by means of the angular coordinate y, so that S1 =
{y(mod 2π)}, and change variables ξ1, ξ2 to y, r by the formulae ξ1 = r cos y, ξ2 = r sin y,
where r is the radial coordinate on the plain, then (1.3) takes the form

∫ T

0

〈µt, ∂tΦ + divx(Φv) + (Y : ∇xv)∂yΦ〉dt + 〈µt|t=0, Φ|t=0〉 = 0, (1.4)

where

Y =

( −1
2
sin 2y cos2 y

− sin2 y 1
2
sin 2y

)

and Φ = Φ(t, x, y) is a test function satisfying Φ ∈ C1([0, T ]× Ω× S1), Φ|t=T = 0.
In the sense of the theory of distributions, equation (1.4) is equivalent to the linear partial

differential equation
∂tµt + v · ∇xµt + ∂y(µtY : ∇xv) = 0. (1.5)

Definition 1.2. Equation (1.5) is called the Tartar equation.

If a velocity field v = (v1, v2) in (1.1) is nonsmooth, i.e. in L2(0, T ; W 2
2 (Ω)), then the

relevant equation (1.5) takes place for H-measures as well. This fact was rigorously obtained
in [22] in view of a problem of the motion of a nonhomogeneous viscous incompressible fluid
[1] in a case of absolute values of highly oscillatory distributions of density being uniformly
bounded in Ω.

Besides [22, §2], the H-measure µt is absolutely continuous with respect to the Lebesgue
measure on Ω, and, as a functional on C(Ω×S1), admits natural expansion onto L2(Ω, C(S1)).
Due to the Lebesgue — Nikodym theorem [2, ch. V, §5.5], these properties imply that the
H-measure µt is a natural continuation of some mapping νt ∈ L2,w(Ω,M+(S1)) into the
space of Borel measures on Ω × S1. That is, for any function ϕ ∈ L2(Ω, C(S1)) for a.e.
t ∈ [0, T ] one has

〈µt, ϕ〉 =

∫

Ω

〈νt,x, ϕ(x, ·)〉dx. (1.6)
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Thus, we denote
dµt(x, y) = dx dνt,x(y).

Notation 1.3. In the above formulations we have introduced L2,w(Ω,M+(S1)), which is
the space of weakly measurable (with respect to the Lebesgue measure on Ω) mappings
x → λx of Ω into M+(S1) equipped with the norm

‖λ‖L2,w(Ω,M+(S1)) =

(∫

Ω

‖λx‖2dx

)1/2

∀λ ∈ L2,w(Ω,M+(S1)).

M+(S1) is the set consisting of non-negative measures from the dual space of C(S1) and
‖ · ‖ is the norm in M+(S1) defined by the formula ‖λ‖ = 〈λ, 1〉 ∀λ ∈M+(S1) (for details,
see [2, ch.III, §1.6]).

1.3 Main results

In line with the topics of the previous paragraph, there arises the question of finding the
minimum regularity conditions on (v1, v2) providing the well posedness in the class of non-
negative Borel measures on Ω×S1 of Cauchy problems for (1.5), with initial data µt|t=0 = µ0,
such that dµ0(x, y) = dxdν0,x(y), ν0 ∈ L2,w(Ω,M+(S1)). In the present paper, we give an
answer to this question in the case of solenoidal velocity fields v(x, t).

Theorem 1.4 (On the well-posedness of Cauchy problem for the Tartar equation.) If

v ∈ L2(0, T ;
·

J1 (Ω)) and the non-negative measure µ0 defined on Ω × S1 is such that
dµ0(x, y) = dxdν0,x(y), ν0 ∈ L2,w(Ω,M+(S1)), then the Cauchy problem for (1.5), with
Cauchy data µt|t=0 = µ0, has a unique non-negative solution µt such that dµt(x, y) =
dxdνt,x(y), ν ∈ L2(0, T ; L2,w(Ω,M+(S1))).

Notation 1.5.
·

J1(Ω), J(Ω) are the closures in W 1
2 (Ω) and L2(Ω), respectively, of the set

of infinitely smooth solenoidal vector functions, compactly supported in Ω.

The main obstacle in the justification of this theorem is as follows. Rewriting (1.5) in the
equivalent form ∂tµt+divx,y(µtV ) = 0, where V = {v1, v2, Y : ∇xv}, it is easy to observe that
V is not essentially bounded in [0, T ]×Ω×S1. Hence it is impossible to use the well-known
technical method [6] based on use of Grownwall’s lemma for establishing a priori estimates
for solutions of (1.5). Therefore, the original idea on verification of theorem 1.4 consists of
the use of the Lagrangian representation of (1.5) and is based on an assumption that more
simple forms of the equation would provide a way to overcome the aforementioned obstacle.
However, the legitimacy of changing Eulerian variables to Lagrangian ones was justified for
velocity fields v(x, t) that were at least in L1(0, T ; W 2

2 (Ω)) (Ω ⊂ R3) [9], and the question
of less smooth v(x, t) was still open. In order to complete this case we propose the concept
of Lagrange transforms, which extends the theory of Lagrange coordinates into the case of
solenoidal velocity fields being in Lγ(0, T ; W 1

α(Ω)).
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Lagrange transforms appear by virtue of the Lagrange operator, which we define as fol-
lows. For any fixed t ∈ [0, T ] and for a function f(·, t) ∈ Lp(Ω), denote a solution of the
Cauchy problem

QT : ∂sF
(t) + divx(v(x, s)F (t)) = 0, Ω : F (t)(x, s)|s=t = f(x, t)

by F (t)(x, t). Recall that if f ∈ Lϑ(0, T ; Lp(Ω)) then, for a.e. t ∈ [0, T ], there exists a
unique solution F (t)(x, s), belonging, as a function of x, s, to either C([0, T ]; Lp(Ω)) (in the
case p < ∞) or L∞(QT ) ∩C([0, T ]; Lp′(Ω)), with p′ < ∞ arbitrary (in the case p = ∞) [6,
corollaries II.1, II.2].

Definition 1.6. The Lagrange operator L : Lp(Ω) → Lp(Ω) associated to a velocity field
v, is defined by L[f ](x, t) = F (t)(x, 0), t ∈ [0, T ].

Definition 1.7. L[f ] is called the Lagrange transform of f .

We will prove in §2 that the operator L has the following properties.

Proposition 1.8. If f ∈ Lϑ(0, T ; Lp(Ω)), v ∈ Lγ(0, T ;
◦

W 1
α(Ω) ∩ J(Ω)), then we have the

following.

(1) L[f ](x, t) is measurable in QT .

(2) L[f ] ∈ Lϑ(0, T ; Lp(Ω)).

(3) ‖L[f ]‖Lϑ(0,T ;Lp(Ω)) ≤ ‖f‖Lϑ(0,T ;Lp(Ω)) (the equality holds if p < ∞).

(4) If v ∈ C1([0, T ]; C1
0(Ω) ∩ J(Ω)) and mapping f : QT → R, f ∈ C1(QT ), is repre-

sented in Eulerian coordinates then the identity L[f ](ξ, t) = [f ]ξ(ξ, t) holds, where [f ]ξ is a
representation of f in Lagrangian coordinates.

(5) There exists an operator L−1 which is inverse to Lagrange operator L. That is,
L ◦ L−1 and L−1 ◦ L coincide with the identity mapping in Lp(Ω) for a. e. t ∈ [0, T ]. For L
replaced by L−1 the assertions 1–3 hold true.

(6) If v ∈ C1([0, T ]; C1
0(Ω) ∩ J(Ω)) and function [f ]ξ : QT → R, [f ]ξ ∈ C1(QT ) is repre-

sented in Lagrange coordinates then the identity L−1[[f ]ξ](x, t) = f(x, t) holds, where f is a
representation in Euler coordinates.

We remark that with the strength of assertions 4 and 6, the notion of Lagrangian trans-
forms is consistent with the classical concept of Lagrange coordinates.

In §3, using proposition 1.8, we will prove the following theorem.

6



Theorem 1.9 (On the Lagrange representation of the Tartar equation). Let U be a 2 × 2
matrix consisting of the entries Uij(x, t) = L[∂ivj](x, t), i, j = 1, 2.

A non-negative Borel measure µt satisfying the condition dµt(x, y) = dxdνt,x(y), ν ∈
L2(0, T ; L2,w(Ω,M+(S1))), solves the Cauchy problem for the Tartar equation (1.5), with
initial data µt|t=0 = µ0, such that

dµ0(x, y) = dxdν0,x(y), ν0 ∈ L2,w(Ω,M+(S1)),

if and only if a non-negative Borel measure ηt, satisfying dηt(x, y) = dxdλt,x(y), λ ∈
L2(0, T ; L2,w(Ω;M+(S1))), solves the Cauchy problem

∂tηt + ∂y(ηtU : Y ) = 0, ηt|t=0 = ν0. (1.7)

Moreover, the relation 〈λt,x, ψ〉 = L [〈ν, ψ〉] (x, t) holds for any function ψ ∈ C(S1) for a.e.
(x, t) ∈ QT .

Finally, we will prove in §4 the well posedness of the Cauchy problem (1.7). Thus, thanks
to theorem 1.9, we will establish the validity of theorem 1.4.

2 Lagrange transforms

In this section, unlike the rest of the paper, we consider that a space domain Ω may be not
only in R2, but also in an arbitrary Euclidean space RN .

2.1 Preliminaries

We will repeatedly use the well-known properties of solutions of the Cauchy problem

∂tu + v · ∇xu = 0, u|t=λ = u0, x ∈ Ω, t, λ ∈ [0, T ], (2.1)

in order to prove proposition 1.8, along with a set of auxiliary statements concerning La-
grange transforms, which will be employed for the verification of theorem 1.9. Therefore, it
is suitable to recall some of these properties.

If v and u0 involved in (2.1) satisfy the conditions v ∈ C1([0, T ]; C1
0(Ω) ∩ J(Ω)), u0 ∈

C1(Ω), then (2.1) has a unique classical solution u ∈ C1(QT ), and this solution has the form
[23, §§4–5], [13]

u(x, t) = u0(Ut,λ(x)), (2.2)

where Ut1,t2 : Ω → Ω is a shift operator, defined by the identity Ut1,t2(x) = ξ(s)|s=t2 . Here,
(d/ds)ξ = v(ξ, s), ξ|s=t1 = x. The mapping U preserves a volume in the sense of the equality
det(∂Ut1,t2(x)/∂x) = 1 ∀ t1, t2 ∈ [0, T ] [28, ch.II, §5, formula (II.5-8)], and admits the group
property Ut3,t1 ◦ Ut2,t3 = Ut1,t2 ∀ t1, t2, t3 ∈ [0, T ].
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Lemma 2.1 (Solutions of (2.1) in Lebesgue classes). Let

v ∈ Lγ(0, T ;
◦

W 1
α (Ω) ∩ J(Ω)), u0 ∈ Lp(Ω), (2.3)

where 1 ≤ γ < ∞, p−1 ≤ 1 − (N − α)(αN)−1 (in the case of N > α) or p ≥ 1 is arbitrary
(in the case of N ≤ α). Then the following statements are valid.

(i) There exists a unique solution u ∈ L∞(0, T ; Lp(Ω)) of problem (2.1). Furthermore, if
1 ≤ p < ∞, then u ∈ C([0, T ]; Lp(Ω)) [6, Corollaries II.1 and II.2].

(ii) The equality ‖u(t)‖p,Ω = ‖u0‖p,Ω ∀ t ∈ [0, T ] holds true in the case of p ∈ [1,∞) [1,
Ch.III, §2, Lemma 2.1]. The bound ‖u(t)‖∞,Ω ≤ ‖u0‖∞,Ω ∀t ∈ [0, T ] holds true in the case
of p = ∞ [6, Formula (16)].

(iii) Let vn and u0n satisfy (2.3), with p < ∞, and vn → v in Lγ(0, T ; W 1
α(Ω) ∩ J(Ω)),

u0n → u0 in Lp(Ω) as n → ∞. Let {un} be a sequence of solutions of (2.1) with given
functions v and u0 replaced by vn and u0n. Let {un} be bounded in L∞(0, T ; Lp(Ω)). Then
un → u in C([0, T ]; Lp(Ω)), where u is a solution of (2.1) with given functions v and u0 [6,
Theorem II.4].

(iv) Let u ∈ L∞(0, T ; Lp(Ω)) be a solution of problem (2.1). Consider the function
uε = u ∗ ωε, where ωε = ε−1ω(·/εN), ω is an even function of class D+(RN) with mean
value equal to zero. Then one has ∂tuε + divx(vuε) = rε, where rε → 0 in Lγ(0, T ; Lβ(Ω)),
β−1 = α−1 +p−1 in the case of α < ∞ or p < ∞; β < ∞ is arbitrary in the case α = p = ∞
[6, Theorem II.1].

We denote ‖ · ‖q,Ω = ‖ · ‖Lq(Ω) ∀ q ∈ [1,∞].

Remark 2.1. If a sequence {fn(x, t)} is bounded in L∞(QT ) and converges to a function f
in C([0, T ]; Lp(Ω)) ∀ p < +∞ then fn → f in L∞(QT ) weak-star. This evident proposition
along with the assertion (iii) in Lemma 2.1 leads to the following.

Corollary 2.3. If hypothesis in the assertion (iii) of lemma 2.1 holds and a sequence u0n

is bounded in L∞(Ω) then un → u in L∞(QT ) weak*.

Definition 2.4. A vector function X = X(x, t, λ), where Xi, i = 1, . . . , N , are solutions
of (2.1) provided with Cauchy data Xi|t=λ = xi, is called a flow.

Definition 2.4, the representation (2.2), assertions (ii) and (iv) of lemma 2.1 and corollary
2.3 directly imply the following lemma.

Lemma 2.5 (On properties of a flow). If a velocity field v in (2.1) satisfies (2.3), then we
have the following.
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(i) X = X(x, t, λ) ∈ Ω ∀ t, λ ∈ [0, T ] and for a. e. x ∈ Ω; [4, §1.2]

(ii) if f ∈ C1(Ω) and Xε is the regularization of a flow in the sense of assertion (iv) of
lemma 2.1 then f(Xε) → f(X) in Lϑ1(0, T ; Lϑ2(Ω)) ∀ϑ1, ϑ2 < ∞ and in L∞(QT ) weak*.

(iii) ∂tf(Xε)+ v ·∇xf(Xε) → 0 in Lγ(0, T ; Lβ(Ω)), where β is defined in assertion (iv)
of lemma 2.1.

We denote by Ω a closed set Ω ∪ ∂Ω.

2.2 Properties of Lagrange operator

2.2.1 Proof of proposition 1.8

Verification of the assertions 2–6 are simple, so, let us confine ourselves to the very scheme of
the proof. In the case of smooth v and f the assertion 2 clearly appears from the properties
of a classical solutions of (2.1). Assertion (iii) of lemma 2.1 makes it possible to extend
this fact onto the case of nonsmooth v and f . The bounds in assertion 3 are derived from
assertion (ii) of lemma 2.1. The correctness of assertion 4 is based on the representation
(2.2) for a classical solution of (2.1), which coincides with the representation of a function
f in Lagrange coordinates ξ. The inverse operator L−1 can be introduced for a.e. t ∈ [0, T ]
by means of a solution of the Cauchy problem

∂sR
(t) + v(x, s) · ∇xR

(t) = 0, (x, s) ∈ QT , R(t)(x, s)|s=0 = f(x, t), x ∈ Ω,

using the formula L−1[f ](x, t) = R(t)(x, t). Thus validity of the assertions 5 and 6 for
smooth v and f is evident due to the representation (2.2), and can be extended on the case
of nonsmooth v and f due to assertion (iii) of lemma 2.1.

Now, let us give a detailed justification of assertion 1, concerning the measurability of
L[f ]. Notice that L∞(Ω) ⊂ Lr(Ω) ∀ r < ∞, since Ω is a bounded domain. Therefore, it is
enough to confine ourselves to the case p < ∞, α < ∞. At first, assume f is in C1(QT ). Let

{vn} ⊂ C1([0, T ], C1
0(Ω) ∩ J(Ω)), vn → v in Lγ(0, T ;

◦
W 1

α (Ω)) and Ln is Lagrange operator
associated with vn. Definition 1.1 and the properties of a classical solution of (2.1) yield
Ln[f ] ∈ C1(QT ). Due to assertion (iii) of lemma 2.1, the relation Ln[f ](·, t) −→

n→∞
L[f ](·, t) in

Lp(Ω) ∀ t ∈ [0, T ] is valid. Hence Ln[f ] → L[f ] a. e. in QT . This means that if f ∈ C1(QT )
then L[f ] is measurable in QT .

Now assume f ∈ Lϑ(0, T ; Lp(Ω)). Let fn ∈ C1(QT ), n = 1, 2, . . ., fn → f in Lϑ(0, T ; Lp(Ω)).
As it has just been proved, L[fn] is measurable in QT . As a consequence of definition 1.6,
the linearity of (2.1) and the validity of the assertion (i) in lemma 2.1, one has L[fn − f ] =
L[fn] − L[f ] for n ≥ 1. Moreover, due to the equality in the hypothesis in assertion (ii) of
lemma 2.1, we arrive at the identity ‖L[fn](·, t) − L[f ](·, t)‖p,Ω = ‖fn(·, t) − f(·, t)‖p,Ω for
a. e. t ∈ [0, T ]. This yields the limiting relation ‖L[fn](·, t) − L[f ](·, t)‖p,Ω → 0 as n → ∞
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for a.e. t ∈ [0, T ]. Hence, L[fn] → L[f ] a. e. in QT . By this, we establish that L[f ] is a
measurable function, and thus conclude the proof of proposition 1.8.

2.2.2 Auxiliary properties of Lagrange operator

We need to establish some extra properties of Lagrange operator, which will be necessary
for verification of theorem 1.9.

Proposition 2.6.

(1) If f ∈ Lϑ(0, T ; L1(Ω)) then
∫
Ω
L[f ]dx =

∫
Ω

f dx a. e. in [0, T ].

(2) If fi ∈ Lϑi
(0, T ; Lpi

(Ω)), i = 1, . . . , k, where
∑k

i=1 p−1
i ≤ 1,

∑k
i=1 ϑ−1

i ≤ 1, then
L[f1 . . . fk] ∈ L1(QT ) and L[f1 . . . fk](x, t) = L[f1](x, t) . . .L[fk](x, t) a. e. in QT .

(3) If fi ∈ L1(QT ), i = 1, . . . , k, then L[f1 + . . . + fk] ∈ L1(QT ) and

L[f1 + . . . + fk](x, t) = L[f1](x, t) + . . . + L[fk](x, t) a. e. in QT .

(4) If f ∈ C1(QT ), X0(x, t) = X(x, t, 0) is a flow in the sense of the definition 2.4, then
L[f ◦X0](x, t) = f(x, t) a. e. in QT , where [f ◦X0](x, t) = f(X0(x, t), t).

(5) If f ∈ C[0, T ] then L[f ](x, t) = f(t) ∀ (x, t) ∈ QT .

(6) If f(x, t) ∈ Lϑ(0, T ; Lp(Ω)) and f(x, t) ≥ 0 then L[f ](x, t) ≥ 0.

(7) If vn, v ∈ Lγ(0, T ; W 1
α(Ω)∩J(Ω)), vn → v in Lγ(0, T ; W 1

α1
(Ω)), where α1 < ∞, α1 ≤

α; Ln, L are Lagrange operators associated with vn, v, respectively, and f ∈ Lϑ(0, T ; Lp(Ω)),
where 1 < ϑ, p, then Ln[f ] → L[f ] in Lϑ(0, T ; Lp(Ω)) weak*.

(8) Assertions 1–3 and 5–7 hold true with L replaced by L−1.

Proof. For the sake of brevity, we omit proofs of the assertions 1–6, 8, because the methods
of proofs do not differ from those of the proof given for the assertions 2–6 of proposition
1.8. That is, we verify the assertions in the case of smooth v and f , and apply assertion
(iii) of lemmas 2.1 and 2.5 and proposition 1.8 in order to give an extension on the case of
nonsmooth v and f .

Now we give justification of assertion 7 in detail. On the strength of Banach–Steinhaus
theorem [12, ch.VII, §1, theorem 3], it is enough to prove that sup

n
‖Ln[f ]‖Lϑ(0,T ;Lp(Ω)) < ∞

and ∫

QT

V (x, t)Ln[f ](x, t)dxdt →
∫

QT

V (x, t)L[f ](x, t)dxdt (2.4)
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for any V in some set being dense in the space Lϑ′(0, T ; Lp′(Ω)), p−1 + (p′)−1 = 1, ϑ−1 +
(ϑ′)−1 = 1.

The estimates in assertion 3 of proposition 1.8 yield that Ln[f ] is bounded in
Lϑ(0, T ; Lp(Ω)). Let us construct a dense in Lϑ′(0, T ; Lp′(Ω)) set of functions satisfying
(2.4). Thus, we will conclude the proof of the assertion 6. The assertion (iii) in Lemma 2.1
implies ‖Ln[f ](t) − L[f ](t)‖p,Ω → 0 a. e. in t ∈ [0, T ]. Hence, Ln[f ] → L[f ] a. e. in QT .
This fact along with Egorov theorem yields that for any ε > 0 there exists a set Qε

T ⊂ QT

such that measQT − measQε
T < ε and Ln[f ](x, t) → L[f ](x, t) uniformly in Qε

T . Hence,∫
E
Ln[f ]dxdt → ∫

E
L[f ]dxdt, where E is an arbitrary measurable subset of Qε

T . Consider
the sequence of numbers εk → 0 and the sequence of domains Qεk

T correspondent to it in the
sense pointed in the previous sentence. Consider the set consisting of characteristic functions
of all measurable subsets E(εk) in Qεk

T , k = 1, 2, . . .. At the end, it remains to note that the
linear span of this set is dense in Lϑ′(0, T ; Lp′(Ω)) [12, ch.III, §3, theorem 4, corollary 2].

3 Lagrange representation of Tartar equation

3.1 Definitions of measure-valued solutions of
Cauchy problems for Tartar equation and Equation (1.7)

Nonnegative measure-valued solutions of Cauchy problems for Tartar equation (1.5) and
Equation (1.7) are understood in the sense of the following definitions.
Definition 3.1. By a nonnegative measure-valued solution of Cauchy problem for Equation
(1.5) we mean a measure µt such that dµt(x, y) = dx dνt,x(y), where
ν ∈ L2(0, T ; L2,w(Ω,M+(S1))), and for all τ ∈ [0, T ] the equality

∫ τ

0

dt

∫

Ω×S1

(∂tΦ + v · ∇xΦ + (Y : ∇xv) ∂yΦ)dµt(x, y)

=

∫

Ω×S1

Φ(x, y, τ)dµτ (x, y)−
∫

Ω×S1

Φ(x, y, 0)dµ0(x, y) (3.1)

takes place. Here, Φ ∈ C1([0, T ]× Ω× S1) is a test function satisfying Φ|∂Ω = 0. •
Definition 3.2. By a nonnegative measure-valued solution of Cauchy problem for Equation
(1.7) we mean a measure ηt such that ηt(x, y) = dxdλt,x(y), where
λ ∈ L2(0, T ; L2,w(Ω,M+(S1))), and for all τ ∈ [0, T ] the equality

∫ τ

0

dt

∫

Ω

dx

∫

S1

(
∂tΦ + (U(x, t) : Y )∂yΦ

)
dλt,x(y)

=

∫

Ω

dx

∫

S1

Φ(x, y, τ)dλτ,x(y)−
∫

Ω

dx

∫

S1

Φ(x, y, 0)dλ0
x(y) (3.2)

takes place for any test function Φ ∈ L∞(Ω, C1(S1 × [0, T ])). •
Remark that the first integral in the right hand side of (3.1) makes sense for any τ ∈ [0, T ],

because whenever µt satisfies (1.5) in the sense of the theory of distributions, t → µt is
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a weakly continuous mapping of interval [0, T ] into the space of Borel measures Ω × S1.
Verification of this is trivial and can be fulfilled similarly to, for example, [1, Ch. III, §1].
The same observation is true for (3.2) as well.

3.2 Proof of Theorem 1.9

At first, we prove that if µt is a nonnegative measure-valued solution of Cauchy problem for
Equation (1.5) then measure ηt defined in the formulation of Theorem 1.9 is a nonnegative
measure-valued solution of Cauchy problem for Equation (1.7).

Justification of this is based on a special choice of test functions in (3.1). Let ϕ1 ∈
C1

0(Ω), ϕ2 ∈ C1[0, T ], ϕ3 ∈ C1(S1). Assume ϕσε
1 (x, t) = ((ϕ1 ◦ (X0 ∗ ωε)) ∗ ω̄σ)(x, t), where

X0(x, t) = X(x, t, 0) is a flow in the sense of Definition 2.1, ωε(x) is a regularizing kernel
defined in Lemma 2.1, ω̄σ(t) = σ−1ω̄(tσ−1) is a kernel mollifying with respect to t, such that
ω̄ is an even function in the class D+(R) with the mean value equal to one. Introducing a
test function of a form Φε(x, y, t) = ϕσε

1 (x, t)ϕ2(t)ϕ3(y) into the equality (3.1) we obtain

∫ τ

0

dt

∫

Ω×S1

(
∂tϕ

σε
1 (x, t)ϕ3(y) + v · ∇xϕ

σε
1 (x, t)ϕ3(y)

+ (Y : ∇xv) ϕσε
1 (x, t)∂yϕ3(y)

)
ϕ2(t)dµt(x, y)

+

∫ τ

0

dt

∫

Ω×S1

ϕσε
1 (x, t)∂tϕ2(t)ϕ3(y)dµt(x, y)

=

∫

Ω×S1

ϕσε
1 (x, τ)ϕ2(τ)ϕ3(y)dµτ (x, y)−

∫

Ω×S1

ϕσε
1 (x, 0)ϕ2(0)ϕ3(y)dµ0(x, y). (3.3)

Due to Lemma ?? the set {ϕσε
1 (x, t)}ε,σ>0 is uniformly bounded in L∞(QT ), and the

following relations hold true.

ϕσε
1 → ϕ1 ◦X0 in Lϑ(QT ), and weak-star in L∞(QT ), (3.4)

ϕσε
1 (τ) → (ϕ1 ◦X0)(τ), ϕσε

1 (0) → (ϕ1 ◦X0)(0) in Lϑ(Ω), and weak-star in L∞(Ω), (3.5)

∂tϕ
σε
1 + v · ∇xϕ

σε
1 → 0 in L2(QT ) (3.6)

as ε, σ → 0, where ϑ < ∞ is arbitrary, (ϕ1 ◦X0)(0) = ϕ1(x) is true in view of the definition
of the flow. Passing to the limit in (3.3) and taking into account the hypothesis in Theorem
1.3 and relations (3.4)–(3.6) we arrive at the equality

∫ τ

0

dt

∫

Ω×S1

(
(ϕ1 ◦X0)(x, t)∂tϕ2(t)ϕ3(y)

+ (Y : ∇xv) (ϕ1 ◦X0)(x, t)ϕ2(t)∂yϕ3(y)

)
dµt(x, y)

=

∫

Ω×S1

(ϕ1 ◦X0)(x, τ)ϕ2(τ)ϕ3(y)dµτ (x, y)−
∫

Ω×S1

ϕ1(x)ϕ2(0)ϕ3(y)dµ0(x, y). (3.7)
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Using the representation (1.6) for measure µt this equality can be rewritten in the form

∫ τ

0

dt

∫

Ω

(
(ϕ1 ◦X0)(x, t)∂tϕ2(t)

∫

S1

ϕ3(y)dνt,x(y)

+
2∑

i,j=1

(ϕ1 ◦X0)(x, t)ϕ2(t)∂ivj(x, t)

∫

S1

Yij ∂yϕ3(y)dνt,x(y)

)
dx

=

∫

Ω

dx(ϕ1 ◦X0)(x, τ)ϕ2(τ)

∫

S1

ϕ3(y)dντ,x(y)−
∫

Ω

dx ϕ1(x)ϕ2(0)

∫

S1

ϕ3(y)dν0,x(y). (3.8)

Now there arises a question of extending the concept of Lagrange transform in order to
treat measures. An answer is given in the following lemma.
Lemma 3.3 (On Lagrange representation of measures). If

ν ∈ L2(0, T ; L2,w(Ω,M+(S1)))

then there exists a unique measure λ ∈ L2(0, T ; L2,w(Ω,M+(S1))) satisfying the identities

〈λt,x, ψ〉 = L[〈ν, ψ〉](x, t) ∀ψ ∈ C(S1), for a. e. (x, t) ∈ QT ; (3.9)

‖λt,x‖ = L[‖ν‖](x, t) for a. e. (x, t) ∈ QT ; (3.10)

and the bound

‖〈λ, ψ〉‖1,QT
≤ ‖ν‖L2(0,T ;L2,w(Ω,M+(S1)))‖ψ‖L2(QT ,C(S1)) ∀ψ ∈ L2(QT , C(S1)). (3.11)

This statement is also true with L replaced by L−1.

Proof. Proposition 2.6 yields that L[〈ν, ·〉](x, t) is a linear functional defined on C(S1)
for a. e. (x, t) ∈ QT . Indeed, due to the assertion 3 in Propositon 2.6 for all ψ1, ψ2 ∈ C(S1)
the chain of equalities

L[〈ν, ψ1 + ψ2〉](x, t) = L[〈ν, ψ1〉+ 〈ν, ψ2〉](x, t) = L[〈ν, ψ1〉](x, t) + L[〈ν, ψ2〉](x, t) (3.12)

holds for a. e. (x, t) ∈ QT , and due to the assertions 2 and 5 for any function ψ(y) ∈ C(S1)
and any constant c the identities

L[〈ν, cψ〉](x, t) = L[c 〈ν, ψ〉](x, t) = L[c](x, t)L[〈ν, ψ〉](x, t) = cL[〈ν, ψ〉](x, t) (3.13)

are valid a. e. in QT . Since measure νt,x is nonnegative, the assertion 6 in Proposition 2.6
yields the inequality

L[〈ν, ψ〉](x, t) ≥ 0 for a. e. (x, t) ∈ QT (3.14)

for all nonnegative in S1 functions ψ ∈ C(S1). Now suppose that ψ ∈ C(S1) is an ar-
bitrary (not necessarily nonnegative) function. In the strength of (3.14) the inequalities

13



L[〈ν, ‖ψ‖C(S1)〉](x, t) ≥ L[〈ν, ψ〉](x, t) and L[〈ν, ψ〉](x, t) ≥ −L[〈ν, ‖ψ‖C(S1)〉](x, t) are valid
for a. e. (x, t) ∈ QT . Due to the assertion 6 in Proposition 2.6 we obtain

L[〈ν, ψ〉](x, t) ≤ ‖ψ‖C(S1)L[〈ν, 1〉](x, t) for a. e. (x, t) ∈ QT . (3.15)

The relations (3.12)–(3.15) yield that for a. e. (x, t) ∈ QT the functional (x, t) → L[〈ν, ·〉](x, t)
defines a nonnegative Borel measure λt,x on S1. Thus, the formula (3.9) makes sense.
Uniqueness of measure λt,x follows from the representation (3.9) along with the identity
L[0](x, t) ≡ 0. Since

〈λt,x, 1〉 = L[〈ν, 1〉](x, t) = L[‖ν‖](x, t) for a. e. (x, t) ∈ QT

the formula (3.10) is correct. Next, if ψ ∈ L2(QT , C(S1)) then

‖〈λ, ψ〉‖1,QT
≤ ‖max

y∈S1
|ψ| 〈λ, 1〉‖1,QT

=
∥∥max

y∈S1
|ψ| ‖λ‖

∥∥
1,QT

.

Estimating this expression by means of Cauchy–Schwartz–Bunyakovskii inequality we arrive
at the bound

‖〈λ, ψ〉‖1,QT
≤ ‖ψ‖L2(QT ,C(S1))‖λ‖L2(0,T ;L2,w(Ω,M+(S1))). (3.16)

In completion of the proof of the lemma, notice that the equality ‖λ‖L2(0,T ;L2,w(Ω,M+(S1))) =
‖ν‖L2(0,T ;L2,w(Ω,M+(S1))) holds true due to (3.10) and the assertion 3 in Proposition 1.8. Hence,
in view of (3.16), the formula (3.11) is valid. N

Turn back to verification of Theorem 1.9. Consider Lagrange transforms of the functions
involved in (3.8). Denote

〈λt,x, ϕ3〉 = L[〈ν, ϕ3〉](x, t), (3.17)

〈λt,x, Yij∂yϕ3〉 = L[〈ν, Yij∂yϕ3〉](x, t), i, j = 1, 2, (3.18)

Uij(x, t) = L[∂ivj](x, t), i, j = 1, 2. (3.19)

Observe that Uij ∈ L2(QT ), i, j = 1, 2, due to the assertion 2 in Proposition 1.8, and
λ ∈ L2(0, T ; L2,w(Ω,M+(S1))) due to Lemma 3.3. The assertion 4 in Proposition 2.6 yields

L[ϕ1 ◦X0](x, t) = ϕ1(x), x ∈ Ω. (3.20)

Using (3.17)–(3.20) and basing on Proposition 2.6 we rewrite (3.8) in the equivalent form

∫ τ

0

dt

∫

Ω

(
ϕ1(x)∂tϕ2(t)

∫

S1

ϕ3(y)dλt,x(y)

+
2∑

i,j=1

ϕ1(x)ϕ2(t)Uij(x, t)

∫

S1

Yij ∂yϕ3(y)dλt,x(y)

)
dx

=

∫

Ω

dxϕ1(x)ϕ2(τ)

∫

S1

ϕ3(y)dλτ,x(y)−
∫

Ω

dxϕ1(x)ϕ2(0)

∫

S1

ϕ3(y)dλ0,x(y). (3.21)
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Here, in line with Definition 1.4 of Lagrange transform we have λ0,x(y) = ν0,x(y). Also,
in view of Definition 3.2 let us denote by ηt a measure defined on Ω × S1 by virtue of the
decomposition dηt(x, y) = dxdλt,x(y).

Any function Φ ∈ L∞(Ω, C1(S1× [0, T ])) can be approximated by a sequence of functions
Φn from the linear span of the set {ϕ1(x)ϕ2(t)ϕ3(y) |ϕ1 ∈ C1

0(Ω), ϕ2 ∈ C1[0, T ], ϕ3 ∈
C1(S1)} in the way that Φn → Φ weak-star in L∞(Ω, C1(S1 × [0, T ])). In the strength of
this limiting relation, Lemma 3.3, and the hypothesis in Theorem 1.9 the integral equality
(3.2) follows from (3.21).

By this we have proved the straightforward assertion in Theorem 1.9. That is, we es-
tablished that a L-image of a nonnegative measure-valued solution of Cauchy problem for
Tartar equation is a nonnegative measure-valued solution of Cauchy problem for Equation
(1.7).

Now, we will prove the inverse assertion in the theorem. That is, we will prove that
L−1-image of a solution of Cauchy problem for Equation (1.7) solves Cauchy problem for
Equation (1.5).

The proof is based on the special choice of test functions in the integral equality (3.2).

Assume {vn} ⊂ C1([0, T ], C1
0(Ω)∩ ·

J(Ω)), vn → v in L2(0, T ;
·

J1(Ω)), where v is a vector-
field associated with Lagrange transform L. Denote by U0,t

n the shift operator associated
with vn. Let ϕ1 ∈ C1[0, T ], ϕ2 ∈ C1(S1), ϕ3 ∈ C1

0(Ω). Introducing into (3.2) a test function
of a form Φ(t, x, y) = ϕ1(t)ϕ2(y)ϕ3(U0,t

n (x)) and observing that due to the definition of shift
operators stated in §2.1 the formula

dU0,t
n (x)

dt
= vn(U0,t

n (x), t) (3.22)

holds true, we arrive at the equality

∫ τ

0

dt

∫

Ω

dx

[(
∂tϕ1(t)ϕ3(U0,t

n (x)) + ϕ1(t)(
dU0,t

n (x)

dt
· (∇xϕ3 ◦ U0,t

n )(x))

) ∫

S1

ϕ2(y)dλt,x(y)

+
2∑

i,j=1

ϕ1(t)ϕ3(U0,t
n (x))Uij(x, t)

∫

S1

Yij(y)∂yϕ2(y)dλt,x(y)

]

=

∫

Ω

dx ϕ1(τ)ϕ3(U0,τ
n (x))

∫

S1

ϕ2(y)dλτ,x(y)−
∫

Ω

dx ϕ1(0)ϕ3(x)

∫

S1

ϕ2(y)dλ0,x(y). (3.23)

In the strength of the assertion 4 in Proposition 1.8 we have ϕ3(U0,t
n (x)) = Ln[ϕ3](x, t) and

(∇xϕ3 ◦U0,t
n )(x) = Ln[∇xϕ3](x, t). Also, in view of (3.22) (d/dt)U0,t

n (x) = Ln[vn](x, t) takes
place.

Let us introduce these expressions into the equality (3.23) and pass to the limit as n →∞.
In the strength of the assertion 3 in Proposition 1.8 the equalities

Ln[vn](x, t)Ln[∇xϕ3](x, t) = Ln[vn − v](x, t)Ln[∇xϕ3](x, t) + Ln[v](x, t)Ln[∇xϕ3](x, t)

are valid a. e. in QT . As a consequence of the assertion 3 in Proposition 1.8 the identities
‖Ln[∂jvni − ∂jvi]‖2,QT

= ‖∂jvni − ∂jvi‖2,QT
, i, j = 1, 2, take place. Hence, Ln[vn − v] → 0
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in L2(0, T ; W 1
2 (Ω)). It follows from the assertion 7 in Proposition 2.6 that Ln[ϕ3] → L[ϕ3]

weak-star in L∞(QT ). Finally, Ln[v]Ln[∇xϕ3] → L[v · ∇xϕ3] weakly in L2(QT ) due to the
assertions 2, 7 in Proposition 2.6.

From (3.23) on the base of just established limiting relations we obtain that
∫ τ

0

dt

∫

Ω

dx[(∂tϕ1(t)L[ϕ3](x, t) + ϕ1(t)L[v · ∇xϕ3](x, t))

∫

S1

ϕ2(y)dλt,x(y)

+
2∑

i,j=1

ϕ1(t)L[ϕ3](x, t)Uij(x, t)

∫

S1

Yij∂yϕ2(y)dλt,x(y)]

=

∫

Ω

dx ϕ1(τ)L[ϕ3](x, t)

∫

S1

ϕ2(y)dλτ,x(y)−
∫

Ω

dx ϕ1(0)ϕ3(x)

∫

S1

ϕ2(y)dλ0,x(y). (3.24)

In view of Lemma 3.3 it occurs that L−1[〈λ, ϕ2〉](x, t) = 〈νt,x, ϕ2〉 a. e. in QT . Hence,
〈λt,x, ϕ2〉 = L[〈ν, ϕ2〉](x, t) a. e. in QT , where measure ν ∈ L2(0, T ; L2,w(Ω,M+(S1))) is
defined in the formulation of Lemma 3.3.

In the strength of Propositions 1.8 and 2.6 the equality (3.24) takes form
∫ τ

0

dt

∫

Ω

L[(∂tϕ1ϕ3 + ϕ1v · ∇xϕ3)

∫

S1

ϕ2(y)dν(y)

+
2∑

i,j=1

ϕ1ϕ3∂ivj

∫

S1

Yij∂yϕ2(y)dν(y)](x, t)dx

=

∫

Ω

ϕ1(τ)L
[
ϕ3

∫

S1

ϕ2(y)dν(y)

]
(x, τ)dx−

∫

Ω

dxϕ1(0)ϕ3(x)

∫

S1

ϕ2(y)dν0,x(y). (3.25)

Basing on the assertion 2 in Proposition 1.8 we finally deduce the equality
∫ τ

0

dt

∫

Ω×S1

[∂tϕ1(t)ϕ2(y)ϕ3(x) + v(x, t) · ∇xϕ3(x)ϕ1(t)ϕ2(y)

+ϕ1(t)∂yϕ2(y)ϕ3(x)(∇xv : Y )] dµt(x, y)

=

∫

Ω×S1

ϕ1(τ)ϕ2(y)ϕ3(x)dµτ (x, y)−
∫

Ω×S1

ϕ1(0)ϕ2(y)ϕ3(x)dµ0(x, y), (3.26)

Here, in line with Definition 3.1, we define dµt(x, y) = dxdνt,x(y).
Observe that the linear span of the set of functions {ϕ1(t)ϕ2(y)ϕ3(x) |

ϕ1 ∈ C1[0, T ], ϕ2 ∈ C1(S1), ϕ3 ∈ C1
0(Ω)} is dense in the set of finite in Ω functions from

C1([0, T ] × Ω × S1). Therefore (3.26) implies the equality (3.1). This means that µt is a
measure-valued solution of Cauchy problem for Equation (1.5). N

4 Proof of Theorem 1.4

In the strength of Theorem 1.9 for verification of Theorem 1.1 it is enough to show that there
exists a unique measure-valued solution (in the sense of Definition 3.2) of Cauchy problem
for Equation (1.7) provided with initial data defined in the hypothesis in Theorem 1.4.
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4.1 Existence of solution

Let Uε ∈ C1(QT ) and ηε
0 ∈ C1(Ω × S1) are smooth regularizations of data provided for

Equation (1.7) such that ηε
0 ≥ 0 in Ω× S1 and

Uε → U in L2(QT ), ηε
0 → η0 weak-star in L2,w(Ω,M+(S1)). (4.1)

Remark, that such a choice of regularizations is both consistent and clear in view of the
theory of distributions [29, Ch.II, §7.9]. Consider the regularized problem

∂tη
ε
t + ∂y(η

ε
t Y : Uε) = 0, (t, x, y) ∈ [0, T ]× Ω× S1,

ηtε(x, y)|t=0 = ηε
0(x, y), (x, y) ∈ Ω× S1.

(4.2)

Due to the theory of linear PDEs of the first order [23, §§4–5] this problem has a solu-
tion ηε

t (x, y) ∈ C1([0, T ] × Ω × S1) which obviously admits the decomposition dηε
t (x, y) =

dxdλε
t,x(y), where λε ∈ L2(0, T ; L2,w(Ω,M(S1))) because ηε

t is in sufficiently regular class.
Multiplying both sides of (4.2) by a function Φ ∈ C1([0, T ] × Ω × R) and integrating with
respect to t and y over S1 × [0, τ ], τ ≤ T , we obtain

∫ τ

0

dt

∫

S1

(∂tΦ + (Uε : Y )∂yΦ)dλε
t,x(y) =

∫

S1

Φ(τ, x, y)dλε
t,x(y)

−
∫

S1

Φ(0, x, y)dλε
0,x(y) far all x ∈ Ω. (4.3)

Consider the Cauchy problem for the dual equation of (4.2).

∂tΦε + (Y : Uε)∂yΦε = 0, (t, x, y) ∈ [0, T ]× Ω× S1,
Φε|t=τ = Φ(τ, x, y), (x, y) ∈ Ω× S1.

(4.4)

Recall [23, §§4–5] that it has a unique solution Φ which is in class C1([0, T ] × Ω × S1) and
has a form Φε(t, x, y) = Φ(τ,Ut,τ (x, y)), where Ut,τ is a shift operator defined by the identity
Ut,τ (x, y) = ϕ(x, y, s)|s=t. Here, ϕ is a solution of the Cauchy problem for the system of
ordinary differential equations

(d/ds)ϕ1 = 0, (d/ds)ϕ2 = 0, (d/ds)ϕ3 = Uε(ϕ1, ϕ2, s) : Y (ϕ3),
ϕ1|s=τ = x1, ϕ2|s=τ = x2, ϕ3|s=τ = y, y ∈ S1.

Let Φ(τ, x, y) in [0, T ]×Ω×R is greater than or equal to zero. The solution of the problem
(4.4) provided with Φ standing for Cauchy data is nonnegative. That is, Φε(t, x, y) ≥ 0 in
[0, T ]× Ω× S1. Introducing this function into (4.3) we establish that

∫

S1

Φ(τ, x, y)dλε
t,x(y) =

∫

S1

Φε(0, x, y)dλε
0,x(y) ≥ 0

since λε
0,x is a nonnegative measure for all x ∈ Ω. It follows from this bound that λε

t,x is a
nonnegative measure for all (x, t) ∈ QT and all ε > 0.
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Let us obtain an estimate for the norm of the measure λε. Introducing the test function
Φ ≡ 1 in (4.3) we get 〈λε

τ,x, 1〉 = 〈λε
0,x, 1〉. Hence ‖λε

t‖L2,w(Ω,M+(S1)) = ‖λε
0‖L2,w(Ω,M+(S1))

∀ t ∈ [0, T ]. Taking into account the limiting relation (4.1) we obtain

‖λε‖L2(0,T ;L2,w(Ω,M+(S1))) ≤ C0, (4.5)

where C0 is independent of ε and depends only on the norm of λ0 in L2,w(Ω,M+(S1)).
Integration of (4.3) with respect to x over Ω leads to the equality

∫ τ

0

dt

∫

Ω

dx

∫

S1

(
∂tΦ + (Uε(x, t) : Y )∂yΦ

)
dλε

t,x(y)

=

∫

Ω

dx

∫

S1

Φ(τ, x, y)dλε
τ,x(y)−

∫

Ω

dx

∫

S1

Φ(0, x, y)dλε
0,x(y) (4.6)

valid for all Φ ∈ C1([0, T ]× Ω× S1).
Due to the bound (4.5) in the strength of Alaoglu theorem on weak-star precompactness

of bounded sequences of linear functionals [30, I.3.12], the set {λε}ε>0 contains a subsequence
such that

λε −→
ε→0

λ weak-star in L2(QT ,M+(S1)). (4.7)

In view of (4.1) and (4.7) we can pass to the limit in (4.6) as ε → 0. Thus, we conclude that
(3.2) holds true, and hence the existence assertion in Theorem 1.4 is proved.

4.2 Uniqueness of solution

We base our proof of the uniqueness assertion on the following proposition.

Proposition 4.1. Suppose that Cauchy problem for Equation (1.7) is provided with (not
necessarily nonnegative) Cauchy data ηt|t=0 = η0, dη0(x, y) = dxdλ0,x(y), and has a (not
necessarily nonnegative) measure-valued solution ηt(x, y). That is ηt(x, y) satisfies Definition
3.2 in the formulation of which the non-negativeness condition is omitted.

Then for all τ ∈ [0, T ] the equality

∫ τ

0

dt

∫

S1

(
∂th + (U(x, t) : Y )∂yh

)
dλt,x(y)

=

∫

S1

h(x, y, τ)dλτ,x(y)−
∫

S1

h(x, y, 0)dλ0,x(y) (4.8)

holds true for a. e. x ∈ Ω for any test function h(x, y, t) such that h(x, y, t) is measurable
in Ω × S1 × (0, T ), ∂yh(x, ·, ·) ∈ C(S1 × [0, T ]), and ∂th(x, ·, ·) ∈ L2(0, T ; C(S1)) for a. e.
x ∈ Ω.
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Proof. Introducing into (3.2) a test function of a form Φ(x, y, t) = g(x)h̄(x, y, t), where
g ∈ L∞(Ω), h̄ ∈ L∞(Ω, C1(S1 × [0, T ])), we arrive at the equality

∫

Ω

gdx

∫ τ

0

dt

∫

S1

(
∂th̄ + (U(x, t) : Y )∂yh̄

)
dλt,x(y)

=

∫

Ω

g dx

∫

S1

h̄(x, y, τ)dλτ,x(y)−
∫

Ω

g dx

∫

S1

h̄(x, y, 0)dλ0,x(y). (4.9)

Since g is an arbitrary function, it follows from (4.9) that for all τ ∈ [0, T ] and for a.
e. x ∈ Ω the equality (4.8) holds true for any test function h̄ ∈ L∞(Ω, C1(S1 × [0, T ])).
Hence, in order to conclude the justification of the proposition it is sufficient to show that
for any function h(x, y, t) satisfying the hypothesis in the proposition there exists a sequence
{hk} ⊂ L∞(Ω, C1(S1 × [0, T ])) which has the following properties:

hk → h a. e. in Ω× S1 × (0, T ), (4.10)

hk(x, ·, ·) → h(x, ·, ·) in C(0, T ; C1(S1)) and

∂th
k(x, ·, ·) → ∂th(x, ·, ·) in L2(0, T ; C(S1)) for a. e. x ∈ Ω. (4.11)

Let us consider the total orthogonal in L2(0, 2π) and L2(0, T ) systems of trigonometric
functions {ϕi(y)}∞i=0 and {ψi(t)}∞i=0, respectively. Assume

Sk(x, y, t) =
k∑

i,j=0

cij(x)ϕi(y)ψj(t), k = 1, 2, . . .

is a sequence of the partial Fourier sums of a function h(x, y, t), where

cij(x) =
2

Tπ

∫

(0,2π)×(0,T )

h(x, y, t)ϕi(y)ψj(t)dydt, i, j = 1, 2, . . . , k

are Fourier coefficients. Assume

Ck(x, y, t) =
S0(x, y, t) + . . . + Sk(x, y, t)

k + 1
, k = 1, 2, . . . , k

is a sequence of the arithmetic means associated with the Fourier series of h(x, y, t).
It is easy to see that Ck(x, ·, ·) ∈ C1(S1×[0, T ]) for a. e. x ∈ Ω, k ≥ 1, and the expression

h(x, ·, ·)ϕi(·)ψj(·) is integrable on S1×(0, T ) for a. e. x ∈ Ω [30, Ch.I, §4]. Hence, coefficients
cij(x) are measurable in Ω, consequently, Ck are measurable in Ω×S1×(0, T ). Due to Luzin

theorem for any n there exists a closed set Ω
ij

n , measΩ
ij

n > measΩ− n−1 such that function

cij(x) is continuous in Ω
ij

n (i, j = 1, 2, . . .). Define

Sk
l =

l∑
i,j=0

ck4

ij (x)ϕi(y)ψj(t), hk =
Sk

0 + . . . + Sk
k

k + 1
, where
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cn
ij(x) =

{
cij(x), x ∈ Ω

ij

n ,

0, x ∈ Ω \ Ω
ij

n ,
i, j = 0, 1, . . . ; n = 1, 2, . . . .

Notice that hk ∈ L∞(Ω; C1(S1 × [0, T ])), k = 1, 2, . . . ;

hk(x, y, t) = Ck(x, y, t) for x ∈ ∩k
i,j=1Ω

ij

k4 ,

meas ∩k
i,j=1 Ω

ij

k4 ≥ measΩ−
k∑

i,j=1

meas(Ω \ Ω
ij

k4) = measΩ − k−2,

and for any n ∈ N the bound

meas

∞⋂

k=n

(
k⋂

i,j=1

Ω
ij

k4

)
≥ measΩ −

∞∑

k=n

k−2 = measΩ− n−1

is valid. Denoting Ω
n

=
⋂∞

k=n

(⋂k
i,j=1 Ω

ij

k4

)
we obtain that

hk(x, y, t) = Ck(x, y, t) for x ∈ Ωn ∀ k ≥ n.

On the other hand, Ck(x, ·, ·) → h(x, ·, ·) uniformly on S1×[0, T ] and strongly in C(0, T ; C1(S1)),
and ∂tCk(x, ·, ·) → ∂th(x, ·, ·) in L2(0, T ; C(S1)) for a. e. x ∈ Ω due to Fejér theorem and
its consequence for summable functions [8, Ch.5, §3.1; Ch.6, §1.1]. Thus,

hk → h a. e. in Ωn × S1 × [0, T ],
hk(x, ·, ·) → h(x, ·, ·) strongly in C(0, T ; C1(S1))

and uniformly in S1 × [0, T ] ∀x ∈ Ωn,
∂th

k(x, ·, ·) → ∂th(x, ·, ·) in L2(0, T ; C(S1)).

Since n ∈ N is arbitrary and the measure of the set Ω\Ωn is bounded from above by 1/n these
limiting relations show that (4.10), (4.11) are valid for the constructed sequence {hk}∞k=1. N

Let us turn back to verification of the uniqueness assertion in Theorem 1.4.
Suppose that η′t and η′′t are two measure-valued solutions (in the sense of Definition

3.2) of Cauchy problem for Equation (1.7) provided with initial Cauchy data such that
η′t|t=0 = η′′t |t=0. Since Equation (1.7) is linear, the (not necessarily nonnegative) measure
ηt = η′t − η′′t solves Cauchy problem for (1.7) provided with zero initial data. Thus, in
order to complete justification of uniqueness assertion one needs to establish that ηt is zero
measure. It amounts to showing that if Cauchy data η0 satisfy dη0 = dxdλ0,x and the identity

∫

S1

f(y)dλ0,x(y) = 0 for a. e. x ∈ Ω ∀ f ∈ C(S1), (4.12)

then a solution ηt of Cauchy problem for Equation (1.7) satisfying dηt(x, y) = dx dλt,x(y)
admits the equality ∫

S1

f(y)dλt,x(y) = 0 for a. e. (x, t) ∈ QT . (4.13)
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In the strength of Proposition 4.1 λt,x satisfies the equality (4.8) which has a form

∫ τ

0

dt

∫

S1

(
∂th + (U(x, t) : Y )∂yh

)
dλt,x(y) =

∫

S1

h(x, y, τ)dλτ,x(y) (4.14)

due to the formula (4.12).
Consider the following Cauchy problem which depends on x as on a parameter.

∂th(x, y, t) + (U(x, t) : Y )∂yh(x, y, t) = 0, (x, y, t) ∈ Ω× S1 × [0, T ],
h(x, y, t)|t=τ = hτ (x, y) = h1(x)h2(y)h3(τ), (x, y, τ) ∈ Ω× S1 × [0, T ].

(4.15)

Here, we assume h1 ∈ C1(Ω), h2 ∈ C1(S1) and h3 ∈ C1[0, T ]. The equation (4.15) is
understood in the sense of the theory of distributions.

Our aim is to show that a solution of this problem is a legitimal test function for the
integral equality (4.8). Thus, we will conclude the verification of the uniqueness assertion of
the theorem since introducing of such a function into (4.8) leads to the identity

h1(x)h3(τ)

∫

S1

h2(y)dλτ,x(y) = 0 for a. e. x ∈ Ω,

and, consequently, to the equality (4.13) due to arbitrariness of the values of τ ∈ [0, T ] and
forms of the functions h1, h2, h3.

In order to prove the solvability of (4.15) fix x∗ ∈ Ω such that U(x∗, ·) ∈ L2(0, T ). In the
strength of Fubini theorem [30, I.4.45] the set of such x∗ has the total Lebesgue measure in
Ω. In view of the theory of linear PDEs [23, §§4–5], a solution of (4.15) is given by formula
h̃(x∗, y, t) = hτ (x

∗, ϕ(x∗, y, t)), where ϕ(x∗, y, t) is a solution of the Cauchy problem

(d/ds)ϕ = U(x∗, s) : Y (ϕ), s ∈ [0, T ], ϕ|s=τ = y, y ∈ S1. (4.16)

Due to Carathéodory theorem [11, Ch.2, §5.3] a solution of (4.16) exists, is unique, is ab-
solutely continuous with respect to s on interval (0, T ), and continuously differentiable with
respect to Cauchy data y ∈ S1 since U(x∗, t) ∈ L2(0, T ), Y ∈ C∞(S1). The proof of con-
tinuously differentiability does not differ from the one given in [21, Ch.I, §5] in the case of
continuous with respect to s right hand side of (4.16). It is quite clear that h̃ has the same
regularity properties as ϕ.

Multiplying (4.15) by an arbitrary function w ∈ C1[0, T ], such that w(0) = w(T ) = 0
and integrating with respect to t we arrive at the equality

∫ T

0

(∂tw)h̃dt =

∫ T

0

w(U(x, t) : Y )∂yh̃ dt. (4.17)

In line with the definition of generalized derivation with respect to t it follows from (4.17)
that ∂th̃(x∗) ∈ L2(0, T ; C(S1)), because (U(x∗) : Y )∂yh̃(x∗) ∈ L2(0, T ; C(S1)).

Thus, we conclude that h̃(x) is continuous in S1 × [0, T ], ∂th̃(x) ∈ L2(0, T ; C(S1)), and
∂yh̃(x) ∈ C([0, T ]× S1) for a. e. x ∈ Ω.
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At the end, it remains to establish measurability of h̃ with respect to (x, y, t) in Ω ×
S1 × (0, T ) which amounts to verify measurability of the solution of (4.16). Due to Luzin
theorem for any ε > 0 there exists a closed set Q

ε

T ⊂ QT , such that measQ
ε

T ≥ measQT − ε,
and U(x, s) is continuous in Q

ε

T . In view of Carathéodory theorem the solution ϕ(x, y, s)
of the problem (4.16) is in C(Q

ε

T × S1). Hence, it satisfies the hypothesis in Luzin theorem,
and, consequently, is measurable in Ω× S1 × (0, T ). N

4.3 Appendix. Generalization to any space dimension N

The restriction to the case of dimension two is not fundamental, i.e. arguments in the paper
can be generalized (in a natural way) to any space dimension N . Consequently, the following
theorem, similar to theorem 1.4, holds true.

Theorem 4.1. If v ∈ L2(0, T ;
·

J1(Ω)) and the non-negative measure µ0 defined on Ω×SN−1

is such that

dµ0(x, y1, . . . , yN−1) = dxdν0,x(y1, . . . , yN−1), ν0 ∈ L2,w(Ω,M+(SN−1)),

then the Cauchy problem for the Tartar equation

∂tµt + v · ∇xµt +
N−1∑

k=1

∂yk
(µt Yk : ∇xv) = 0,

t ∈ [0, T ], x ∈ Ω, (y1, . . . , yN−1) ∈ SN−1,

with Cauchy data µt|t=0 = µ0, has a unique non-negative measure-valued solution µt such
that

dµt(x, y1, . . . , yN−1) = dxdνt,x(y1, . . . , yN−1),

ν ∈ L2(0, T ; L2,w(Ω,M+(SN−1))).

Here, Ω is a bounded open subset of RN with smooth boundary, SN−1 is the unit sphere
in RN , y1, . . . , yN−1 are angular coordinates on SN−1, and

Yk = Yk(y1, . . . , yN−1), k = 1, . . . , N − 1,

are (N-1)x(N-1) matrices consisting of known infinitely smooth components Y ij
k (y1, . . . , yN−1).

The explicit forms of these components depend on a choice of parametrization on SN−1.
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