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Abstract

In the present article, an initial-boundary value problem for the system of the classical
Navier–Stokes equations describing dynamics of non-homogeneous viscous incompressible
fluid in a bounded domain Ω ⊂ R2 is considered. It is supposed that the values of density
ρ(x, t) are translated along the trajectories of motions of fluid particles with the velocity
~v(x, t). The well posedness of this problem was established in [1]. We investigate the
weak limits of sequences of solutions ρε(x, t), ~vε(x, t), ∇pε(x, t) of this problem as ε → 0,
provided with initial distributions of density ρε(x, 0) and velocity ~vε(x, 0) satisfying the
following conditions:

ρε(x, 0) → ρ0(x) weakly* in L∞(Ω), ~vε(x, 0) → ~v0(x) in H1(Ω).

We prove that, in this case, ρε → ρ weakly* in L∞(Ω × [0, T ]), ~vε → ~v weakly in
L2(0, T ; H2(Ω)), and ∇pε → ∇p weakly in L2(Ω × [0, T ]) as ε → 0, where the triple
of functions ~v(x, t), ρ(x, t) and ∇p(x, t) is a strong generalized solution of the problem
under consideration provided with the initial data ~v0(x) and ρ0(x). Besides, we establish
that the Tartar H-measure µ [2], associated with the extracted subsequence {ρε(x, t)}, is
a solution of the transport equation

Dtµ + divx(µ ~v) +
∂

∂y
(µ Y : ∇x~v) = 0, (t, x, y) ∈ [0, T ]× Ω× S1,

in which

Y =
( −1

2 sin 2y cos2 y
− sin2 y 1

2 sin 2y

)
.

∗English translation of the Appendix of the Candidate of Sciences Thesis. Published in Russian in Dinamika
Sploshnoi Sredy (Dynamics of Continuum Medium) / Novosibirsk – Siberian Division of Russian Academy of
Sciences / Collection of works 113 (1998), pp. 123–134.
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1 Existence of a solution to the problem

1.1 The statement of the problem
and review of the known results

The following problem is under consideration.
Problem A. In a space-time cylinder QT = {(x, t) ∈ Ω × [0, T ]}, where Ω is a bounded
domain in R2 and T = const > 0, find a velocity field ~v(x, t) = {v1(x, t), v2(x, t)}, a density
distribution ρ = ρ(x, t) and a hydraulic pressure p = p(x, t) satisfying the equations

ρDt~v + ρ

2∑
i=1

viDi~v − ν∆~v +∇p = ρ~f, (1)

div~v = 0, (2)

Dtρ +
2∑

i=1

viDiρ = 0, (3)

and initial and boundary conditions

~v|∂Ω = 0, ~v(x, 0) = ~v0(x), (4)

ρ(x, 0) = ρ0(x). (5)

In (1)–(5) and further in the paper, Dt = ∂/∂t, Di = ∂/∂xi, and viscosity ν is a given positive
constant.
Definition 1. The triple of functions ~v(x, t), ρ(x, t) and ∇p(x, t) is called a strong generalized
solution if it satisfies the conditions ~v ∈ L2(0, T ; H2(Ω)) ∩ L∞(0, T ; H1(Ω)), Dt~v ∈ L2(QT ),
∇p ∈ L2(QT ), and ρ ∈ L∞(QT ), the equalities

ρDt~v + ρ

2∑
i=1

viDi~v − ν∆~v +∇p = ρ~f, almost everywhere in QT , (6)

div~v = 0, almost everywhere in QT , (7)

and the integral equality

∫

QT

ρ(Dtϕ +
2∑

i=1

viDiϕ)dxdt +

∫

Ω

ρ0ϕ(x, 0)dx = 0 (8)

for any test function ϕ satisfying the conditions ϕ(t) ∈ C1([0, T ], W 1
2 (Ω)), and ϕ(x, T ) = 0.

Recall that Hk(Ω), k ∈ Z is the closure of the set of functions {φ | φ ∈ C∞
0 (Ω), divφ =

0} with respect to norm in W k
2 (Ω), and we denote H0 ≡ H.

If ~f ∈ L2(0, T, L2(Ω)), ~v0 ∈ H1(Ω) and m ≤ ρ0(x) ≤ M, x ∈ Ω, 0 < m, M <
∞, m, M = const, then it is proved in [1] that the Galerkin approximations {~vN , ρN} admit
the bounds

max
0≤t≤T

‖~vN(t)‖H1(Ω)

≤ exp

(
C1M

2[
1

2
‖~v0‖2

2,Ω + ‖~f‖2,1,QT
(‖~f‖2,1,QT

+ ‖~v0‖2,Ω)]2
)

[‖~f‖2
2,QT

+ ‖~v0‖2
H1(Ω)]; (9)
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‖Dt~v
N‖2

2,QT
≤ ν

m

(
C2[‖~f‖2,QT

+ ‖~v0‖2
H1(Ω)]

2 + C3‖~f‖2,QT
+ ‖~v0‖2

H1(Ω)

)
; (10)

‖~vN
xx‖2,QT

≤ C4[‖~f‖2
2,QT

+ ‖~v0‖2
H1(Ω) + 1]; (11)

and
m ≤ ρN(x, t) ≤ M. (12)

In (9)–(12), C1 – C4 are constants that do not depend on the number N of the Galerkin
approximation and on the given data in the problem.

It was also proved that these estimates (along with some other properties of the sequence
{~vN , ρN}, which were established in [1]) yield the following limit relations:

~vN → ~v weakly in L2(0, T, H2(Ω)) and weakly* in L∞(0, T ; H1(Ω)), (13)

Dt~v
N → Dt~v weakly in L2(QT ), (14)

ρN → ρ weakly* in L∞(QT ), and strongly in Lq(QT ), 1 ≤ q < ∞, (15)

where the triple ~v ∈ L∞(0, T,H1(Ω) ∩ L2(0, T, H2(Ω)), ρ ∈ L∞(QT ) and ∇p(x, t) is a strong
generalized solution of Problem A.

1.2 A solution of Problem A provided with frequently oscillating
initial data

Frequently oscillating initial data are modeled as the sequences of the initial distributions
ρε(x, 0) and ~vε(x, 0) in Problem A, where ε → 0. Consider

m ≤ ρ0ε ≤ M, ρ0ε(x) → ρ0(x) weakly* in L∞(Ω), (16)

~v0ε(x) → ~v0(x) in H1(Ω). (17)

According to Section 1.1, for any ε > 0 there exists a generalized solution {~vε(x, t), ρε(x, t),
∇pε(x, t)}, corresponding to the initial data {~v0ε(x), ρ0ε(x)}.

We prove the following

Theorem 1. Let {~v0ε(x), ρε(x)} satisfy the conditions (16) and (17). Then, there exists a se-
quence {~vε(x, t), ρε(x, t), ∇pε(x, t)} of strong generalized solutions of Problem A corresponding
to the initial data {~v0ε(x), ρε(x)}, and there exist functions ~v(x, t), ρ(x, t) and ∇p(x, t) such
that

~vε(x, t) → ~v(x, t) weakly in L2(0, T,H2(Ω)), weakly* in L∞(0, T ; H1(Ω)), (18)

Dt~vε(x, t) → Dt~v(x, t) weakly in L2(QT ), (19)

ρε(x, t) → ρ(x, t) weakly* in L∞(QT ), (20)

∇pε(x, t) → ∇p(x, t) weakly in L2(QT ); (21)

the triple of functions ~v(x, t), ρ(x, t), ∇p(x, t) is a strong generalized solution of Problem A
provided with initial data ~v(x, 0) = ~v0(x), ρ(x, 0) = ρ0(x), where ~v(x, 0) = ~v0(x) and ρ(x, 0) =
ρ0(x) are the weak* limits of the sequences ~v0ε(x) and ρ0ε(x) in H1(Ω) and L∞(Ω), respectively.

We prove the theorem in two steps. The first step consists in the justification of the following
auxiliary

Lemma 1. As ε → 0, the sequence of strong generalized solutions of Problem A converges to
a weak generalized solution of Problem A.
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Definition 2. A pair of functions ~v ∈ L2(0, T ; H1(Ω)) ∩ L∞(0, T ; H(Ω)) and ρ ∈ L∞(QT ),
0 < m ≤ ρ(x, t) ≤ M < ∞ (almost everywhere in QT ), is called a weak generalized solution of
Problem A if it satisfies the following two integral equalities

∫

QT

ρ~v · (Dt
~Φ +

2∑
i=1

viDi
~Φ)dxdt−

∫

QT

ν∇~v : ∇~Φdxdt +

∫

QT

ρ~f · ~Φdxdt

+

∫

Ω

ρ0~v0 · ~Φ(x, 0)dx = 0, (22)

∫

QT

ρ(Dtϕ +
2∑

i=1

viDiϕ)dxdt +

∫

Ω

ρ0ϕ(x, 0)dx = 0, (23)

where ~Φ and ϕ are test functions satisfying the conditions ~Φ(t) ∈ C1([0, T ], H1(Ω)), ϕ(t) ∈
C1[0, T, W 1

2 (Ω)], div~Φ = 0, ~Φ|∂Ω = 0, ~Φ(x, T ) = 0, and ϕ(x, T ) = 0.
Proof of Lemma 1. From the bounds (9)–(12), we deduce the uniform with respect to ε
estimates for ~vε(x, t), ρε(x, t):

(
‖~vε‖L2(0,T ;H2(Ω)), ‖~vε‖L∞(0,T ;H1(Ω)), ‖Dt~vε‖2,QT

)
≤ C5, (24)

m ≤ ρε ≤ M, (x, t) ∈ QT , (25)

where C5 depends only on C1 −−C4.
The estimates (24), (25) and the equality

∇pε = −ρεDt~vε − ρε

2∑
i=1

viεDi~vε + ν∆~vε + ρε
~f, a.e. in QT , (26)

immediately yield the formulae (18)–(21).
Introduce the Banach space W = {~u | ~u ∈ L2(0, T ; H2(Ω)), Dt~u ∈ L2(0, T ; H(Ω))},

equipped with the norm

‖~u‖W = ‖~u‖L2(0,T ;H2(Ω)) + ‖Dt~u‖L2(0,T ;H(Ω)).

The embedding of H2(Ω) into H1(Ω) is compact due to the Rellich theorem, ~vε ∈ W thanks to
estimate (24). Hence, in the strength of the Lions compactness lemma [3], the following limit
relation holds true:

~vε → ~v in L2(0, T ; H1(Ω)), (27)

consequently, since H1(Ω) ⊂ L4(Ω), one also has

~vε → ~v in L2(0, T ; L4(Ω)). (28)

The formulae (16)–(18), (27), (28) provide the necessary basis for the limiting transitions as
ε → 0 in all terms in the integral equalities (22) and (23). Therefore, these equalities are valid
with ~vε(x, t) and ρε(x, t) replaced by ~v(x, t) and ρ(x, t), respectively. Lemma 1 is proved.

The second step of the proof of Theorem 1 consists in verification of the assertion that
the immediately above obtained weak generalized solution of Problem A is in fact a strong
generalized solution to Problem A.
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In the strength of the estimates (24) and (25) and the equality (26), the solution under
consideration meets the requirements of regularity of strong generalized solutions:





~v ∈ L2(0, T ; H2(Ω)) ∩ L∞(0, T ; H1(Ω)) ∩W 1
2 (0, T ; H(Ω)),

∇p ∈ L2(QT ),
ρ ∈ L∞(QT ), 0 < m ≤ ρ(x, t) ≤ M < ∞ a.e. in QT .

(29)

The functions ~v(x, t) and ρ(x, t) satisfy the integral equality (23) (or, equivalently, the equality
(8)). In order to finish verification of Theorem 1, it remains to establish the equality (6) almost
everywhere in QT .

Let a sequence {~vn} ⊂ C1(QT ) be such that

~vn → ~v in L2(0, T ; H2(Ω)) ∩ L∞(0, T ; H1(Ω)) ∩W 1
2 (0, T ; H(Ω)), (30)

~vn(x, 0) → ~v0(x) in H1(Ω), div~vn = 0, ~vn|∂Ω = 0. (31)

Represent the equality (22) in the form

(∫

QT

ρ(Dt(~Φ · ~vn) +
2∑

i=1

viDi(~Φ · ~vn))dxdt +

∫

Ω

ρ0(~vn(x, 0) · ~Φ(x, 0))dx

)

−
[∫

QT

(ρ(Dt~vn +
2∑

i=1

viDi~vn)− ν∆~vn − ρ~f)~Φ)dxdt

]

+

{∫

QT

ρ(~v − ~vn)(Dt
~Φ +

2∑
i=1

viDi
~Φ)dxdt−

∫

QT

ν∇(~v − ~vn) : ∇~Φdxdt

+

∫

Ω

ρ0(~v0 − ~vn(x, 0))~Φ(x, 0)dx

}
= 0. (32)

The product ~Φ · ~vn is a valid test function for the equality (23) since ~Φ · ~vn ∈ C1(0, T ; W 1
2 (Ω)).

This fact yields that the expression in the big brackets (i.e. in (. . .)) in (32) is the identical
zero. The formulae (29)–(31) and the conditions of Theorem 1 allow to proceed in (32) the
limiting transition as n →∞. Within this limiting transition, the expression in the parenthesis
in (32) tends to zero, and we obtain eventually the following:

∫

QT

[
ρ(Dt~v +

2∑
i=1

viDi~v)− ν∆~v − ρ~f)

]
~Φdxdt = 0. (33)

Here, ~Φ is a solenoidal function in C1(0, T ; H1(Ω)), and the expression in the square bracketsin
(33) belongs to L2(QT ). Moreover, this expression is the gradient of some function almost
everywhere in QT in the strength of the arbitrariness of Φ and the well known theorem on the
decomposition of the space L2. Theorem 1 is proved.

2 The Tartar H-measure.

The theorem on continuation of the measure

In [2], there was proposed the notion of H-measure, which effectively describes the evolution of
oscillatory phenomena in problems with highly oscillatory initial data. The rest of the present
paper is devoted to a studying of H-measures associated with solutions of Problem A.
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Let A: L2(R
2) → L2(R

2) be a pseudo-differential operator of zero order with the principal
symbol a( ξ

|ξ|), a ∈ C1(S1), ξ ∈ R2, which means in terms of the Fourier transform F that

F [A[u]](ξ) = a( ξ
|ξ|)F [u](ξ), where u ∈ L2(R

2), and the Fourier transform is defined by F [u](ξ) =∫
R2 e2πixξu(x)dx. Let ϕ1, ϕ2 ∈ C0(Ω), ψε → ψ weakly in L2(Ω), and ϕ1, ϕ2, ψε(x), and ψ(x)

are equal to zero outside Ω.
Choosing (if necessary) a subsequence from ψε, define the mapping µ: C(S1) × C0(Ω) ×

C0(Ω) → R by means of the formula

〈µ, aϕ1ϕ2〉 = lim
ε→0

∫

R2

ϕ1(ψε − ψ)A[ϕ2(ψε − ψ)]dx, (34)

or, equivalently, in terms of the Fourier transform

〈µ, aϕ1ϕ2〉 = lim
ε→0

∫

R2

F [ϕ1(ψε − ψ)](ξ) a(
ξ

|ξ|)F [ϕ2(ψε − ψ)](ξ)dξ.

In [2], the following fundamental theorem was proved:

Theorem 2. The mapping µ is a non-negative Borelian measure in Ω× S1.

Remark. In view of this theorem, the formally above introduced in (34) duality brackets make
in fact the ordinary sense of an integral with respect to measure µ:

〈µ, f〉 =

∫

Ω×S1

f dµ, f ∈ C(Ω× S1).

Definition 3. Measure µ is called the H-measure associated with the (sub)sequence ψε → ψ.
Now we are going to prove the following:

Theorem 3. (on a continuation of the H-measure.) If |ψε(x)| ≤ C3, where x ∈ Ω, and C3 =
const is a constant independent of ε, then the measure µ, associated with the (sub)sequence
ψε(x)− ψ(x), has a natural continuation onto L2(Ω, C(S1)).

The proof of Theorem 3 is based on the following auxiliary assertion, which is a direct
consequence of the definition of H-measure and some properties of the Lebesgue measure on Ω
(and we state it without a proof):

Lemma 2. The measure µ is absolutely continuous with respect to the Lebesgue measure on Ω.

Proof of Theorem 3. i) In the strength of Lemma 2 and the Lebesgue – Nikodym theorem
[4, Ch. 5, §5.5], there exists a representation of the H-measure in the form

〈µ, f〉 =

∫

Ω

dx

∫

S1

f(x, y)dνx(y), (i.e. dµ(x, y) = dxdνx(y)),

where x → νx is a weakly measurable with respect to the Lebesgue measure on Ω mapping of
Ω into a space of Borelian measures on S1.

In the rest of the proof, we investigate the properties of the mapping x → νx.
ii) The bound for the norm of νx. Let f = f(x), f ∈ C0(Ω). In the strength of the hypothesis

of Theorem 3 and in the strength of formula (34), one has

|〈µ, f〉| = |
∫

Ω

f(x)‖νx(·)‖dx| ≤ ‖f‖2,Ω sup
ε
‖ψε − ψ‖2,Ω sup

ε
‖ψε − ψ‖∞,Ω ≤ C4‖f‖2,Ω,
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where C4 = 8( meas Ω)2 C3.
Since C0(Ω) is dense in L2(Ω), then, for any function ϕ ∈ L2(Ω), the integral

∫
Ω

ϕ(x)‖νx(·)‖dx
defines a linear continuous functional on L2(Ω). In the strength of the Riesz theorem on rep-
resentations, it is valid that ‖νx(·)‖ ∈ L2(Ω) and ‖‖νx(·)‖‖2,Ω ≤ C4.

iii) Thus, it is possible to define 〈µ, aϕ〉 =
∫
Ω

dxϕ(x)
∫

S1 a(y)dνx(y) for all ϕ ∈ L2(Ω)
and a ∈ C(S1). It remains to notice that the linear span of the set {ϕ(x) a(y) | ϕ(x) ∈
L2(Ω), a(y) ∈ C(S1)} is dense in L2(Ω, C(S1)), consequently, the duality brackets 〈µ, f〉 =∫
Ω

dx
∫

S1 f(x, y)dνx(y) make sense for all f ∈ L2(Ω, C(S1)).
Theorem 3 is proved.

3 Transport properties of H-measures

3.1 A Theorem on transport properties of H-measures (formulation)

Consider the couple ρε(x, t) and ~vε(x, t) and the couple ρ(x, t) and ~v(x, t), which are solutions
of Problem A corresponding to initial data ρ0ε(x), ~v0ε(x), and ρ0(x), ~v0(x), respectively. In the
strength of Theorems 1 and 2, the (sub)sequence {ρε − ρ} generates the H-measure µ(t, x, y),
which is defined for a.e. t ∈ (0, T ] and depends on t as on a parameter, and the (sub)sequence
{ρ0ε − ρ0} generates the H-measure µ0.

Keeping track of the proof of Theorem 3, one can establish that the norm of the measure
µ(t, x, y) admits the bound

‖‖µ(t, ·, ·)‖‖2,[0,T ] ≤ const sup
ε
‖ρε − ρ‖2,QT

sup
ε
‖ρε − ρ‖∞,QT

.

This bound together with Lemma 2 and the Lebesgue – Nikodym theorem immediately implies
the following:

Lemma 3. The composition of the Lebesgue measure on [0, T ] and the H-measure µ(t, x, y)
makes sense, and for any function f ∈ L2(QT , C(S1)) the following representation is valid.

∫ T

0

dt

∫

Ω×S1

f(t, x, y)dµ(t, x, y) =

∫ T

0

dt

∫

Ω

dx

∫

S1

f(t, x, y)dνt,x(y),

(that is dt dµ(t, x, y) = dt dx dνt,x(y)).

Here, (t, x) → νt,x is a weakly measurable with respect to the Lebesgue measure on [0, T ] × Ω
mapping of [0, T ]×Ω onto S1. For the norm of the measure νt,x, the bound ‖‖νt,x(·)‖‖2,QT

≤ C5

takes place, where C5 = C5(T, Ω, C3).

We parametrize the unit circle by means of the angular coordinate y: S1 = {y( mod 2π)}.
The main result of the present section is the following theorem.

Theorem 4. (on transport properties of H-measures). The H-measure µ(t, x, y), (t, x, y) ∈
[0, T ]× Ω× S1 associated with a (sub)sequence {ρε − ρ}, is a solution to the following Cauchy
problem for the linear transport equation:

{
Dtµ + divx(µ ~v) + ∂

∂y
(µ Y : ∇x~v) = 0, (t, x, y) ∈ [0, T ]× Ω× S1,

µ(0, x, y) = µ0(x, y), (x, y) ∈ Ω× S1,
(35)

where Y =

( −1
2
sin 2y cos2 y

− sin2 y 1
2
sin 2y

)
.
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A solution of the problem (35) is understood in the sense of the integral equality

∫ T

0

dt

∫

Ω×S1

(DtΦ + ~v∇xΦ + (Y : ∇x~v)
∂

∂y
Φ)dµ(t, x, y) +

∫

Ω×S1

Φ(x, y, 0)dµ0(x, y) = 0, (36)

where Φ(t, x, y) ∈ C1([0, T ] × Ω × S1) is a test function satisfying the conditions Φ|∂Ω = 0,
Φ|t=T = 0. It is worth to notice that the expression under the integral sign with respect to t is
in L1([0, T ]). Thus, equality (36) makes sense in view of Lemma 4.

3.2 A commutator of a multiplier and a p.d.o. of zero order

In this subsection, we are going to establish some preliminary results that will be helpful for
verification of Theorem 4.

Let A be a pseudo-differential operator of zero order with a principal symbol a(x′) ∈ C1(S1).
According to [5], the inverse Fourier transform of the function a( ξ

|ξ|) is a singular kernel K(x)

of the form ω(x)/|x|2, where ω ∈ C1(R2 \ {0}) is a homogeneous function of zero order,∫
S1 ω(x′)dσ(x′) = 0, (x′ ∈ S1 and σ is the induced Euclidean measure on S1), and opera-

tor A has the representation in the form A[ψ] = K ∗ ψ, ψ ∈ L2(R
2). Let B be the operator of

the multiplication by a function b ∈ W 2
2 (Ω). Evidently, B is a continuous operator defined in

Lp(Ω) for any p, since W 2
2 (Ω) ⊂ L∞(Ω).

Lemma 4. The commutator C of the operators A and B (C
def
= AB − BA) is a continuous

operator mapping from L∞(Ω) into W 1
1 (Ω), and the following bound holds true

‖DjC[h]‖1,Ω ≤ C6(‖a‖C1(S1) + ‖ω‖C1(S1))‖b‖W 2
2 (Ω)‖h‖∞,Ω (j = 1, 2), (37)

where h ∈ L∞(Ω) is an arbitrary function, and C6 = C6(Ω) is a constant.

Proof. Let {bν(x)} ⊂ C∞(Ω), bν → b in W 2
2 (Ω). Denote by Cν = ABν−BνA the commutator

in which the function bν(x) is on the place of b. In the strength of [2], Cν is a continuous operator
mapping from L2(Ω) into W 1

2 (Ω) (hence, also, from L∞(Ω) into W 1
1 (Ω)).

Let w ∈ L∞(Ω). Consider the integral

I =

∫

Ω

DjC
ν [h](x)w(x)dx ≡

∫

Ω

w(x)Dj

∫

Ω

ω(x− z)

|x− z|2 (bν(z)− bν(x))h(z)dzdx. (38)

In the strength of the properties of the Fourier transform, one has

F [DjC
ν [h]](ξ) = 2iπξj

∫

R2

(
a(ξ/|ξ|)− a(η/|η|)

)
F [bν ](ξ − η)F [h](η)dη

=

∫

R2

[2iπξja(ξ/|ξ|)− 2iπηja(η/|η|)] F [bν ](ξ − η)F [h](η)dη

−
∫

R2

a(η/|η|)F [Djb
ν ](ξ − η)F [h](η)dη = F [I1(x) + I2(x)](ξ), (39)

where

I1(x) =

∫

Ω

∂

∂(xj − zj)

[
ω(x− z)

|x− z|2
]

(bν(z)− bν(x))h(z)dz,

I2(x) = Djb
ν(x)

∫

Ω

ω(x− z)

|x− z|2 h(z)dz ≡ Djb
ν(x)A[h](x).
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In view of (38) and (39), we conclude that

I =

∫

Ω

w(x)

∫

Ω

∂

∂(xj − zj)

[
ω(x− z)

|x− z|2
]

(bν(z)− bν(x))h(z)dzdx−
∫

Ω

w(x)Djb
ν(x)A[h](x)dx.

(40)
Consider the Taylor representation

bν(z)− bν(x) = −
2∑

k=1

Dkb
ν(z)(zk − xk)

−
2∑

k,l=1

∫ 1

0

dλ1

∫ 1

0

dλ2DkDlb
ν(z + ~elλ1λ2δkl(zk − xk) + ~elλ2(zl − xl))(zk − xk)(zl − xl), (41)

where ~e1 = (1, 0) and ~e2 = (0, 1) are the basis vectors in R2 and δkl (k, l = 1, 2) is the Kronecker
symbol.

Substituting (41) into (40), we derive

I ≡ Ia + Ib + Ic =
2∑

k=1

∫

Ω

w(x)

∫

Ω

∂

∂(xj − zj)

[
ω(x− z)

|x− z|2
]

(xk − zk)(Dkb
ν(z))h(z)dzdx

−
2∑

k,l=1

∫

Ω×Ω

w(x)
∂

∂(xj − zj)

[
ω(x− z)

|x− z|2
]

(xk − zk)(xl − zl)h(z)

×
{∫ 1

0

dλ1

∫ 1

0

dλ2DkDlb
ν(z + ~elλ1λ2δkl(zk − xk) + ~elλ2(zl − xl))

}
dzdx

−
∫

Ω

w(x)(Djb
ν(x))A[h](x)dx. (42)

Let us estimate each of the integrals Ia, Ib and Ic:

Ia =
2∑

k=1

∫

Ω

w(x)Ãjk[(Dkb
ν)h](x)dx,

where

Ãjk[Dkb
νh](x) =

∫

Ω

∂

∂(xj − zj)

[
ω(x− z)

|x− z|2
]

(xk − zk)(Dkb
ν(z))h(z)dz.

In view of the properties of the Fourier transform, the identity

F [Ãij[(Dkb
ν)h](ξ) =

∂

∂ξj

a(
ξ

|ξ|)ξi F [(Dkb
ν)h](ξ),

holds true. Here we have the p.d.o. of zero order Ãij with the principal symbol ∂
∂ξj

a( ξ
|ξ|)ξi. Its

norm evidently admits the bound

‖Ãij[h](t)‖2 ≤ C7‖a‖C1(S1)‖Dkb
νh‖2,Ω.

Here, C7 = C7(Ω) is a constant not depending on h and a. In its turn, this bound yields the
following one:

|Ia| ≤ C8(Ω)‖w(x)‖∞,Ω‖a‖C1(S1)‖bν
x‖2,Ω‖h‖∞,Ω (43)
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Let us change variable under the integral sign in Ib: x = q + z. We obtain

Ib = −
2∑

k,l=1

∫

B×Ω

w(q + z)
∂

∂qj

[
ω(q)

|q|2
]

qkqlh(z)

×
{∫ 1

0

dλ1

∫ 1

0

dλ2DkDlb
ν(z + ~elλ1λ2δklqk + ~elλ2ql)

}
dqdz.

Here B is the domain, which contains the supporter of the function w(q + z), z ∈ Ω, x ∈ Ω.
One has meas B ≤ 4π(diamΩ)2, where diamΩ is the diameter of the smallest ball containing
Ω.

According to Holder’s inequality, we have

|Ib| ≤
2∑

k,l=1

‖h‖∞,Ω‖w‖∞,Ω

(∫

B

| ∂

∂qj

[
ω(q)

|q|2
]

qkql|dq

)
‖DkDlb

ν‖1,Ω.

In view of the bound ‖DkDlb
ν‖1,Ω ≤ C9(Ω)‖DkDlb

ν‖2,Ω we have
∫

B

| ∂

∂qj

[
ω(q)

|q|2
]

qkql|dq ≤ ‖ω‖C1(S1)

∫

B

dq

|q| ≤ C10(Ω)‖ω‖C1(S1).

Finally, we get the following estimate for Ib:

|Ib| ≤ C11(Ω)‖h‖∞,Ω‖w‖∞,Ω‖ω‖C1(S1)‖bν
xx‖2,Ω. (44)

According to the properties of the p.d.o. A and to Holder’s inequality, the following estimate
is valid:

|Ic| ≤ ‖w‖∞,Ω‖Djb
ν‖2,Ω‖a‖C(S1)‖h‖2,Ω ≤ C12(Ω)‖w‖∞,Ω‖bν

x‖2,Ω‖a‖C1(S1)‖h‖∞,Ω. (45)

Aggregating (43)–(45), we obtain

‖DjC
ν [h]‖1,Ω ≤ C6(‖a‖C1(S1) + ‖ω‖C1(S1))‖bν‖W 2

2 (Ω)‖h‖∞,Ω, (46)

where C6 = max{C8+C12, C11}. Since bν → b in W 2
2 (Ω), one has that C is a continuous operator

mapping from L∞ into W 1
1 (Ω). Besides, the bound (37) is valid. Lemma 4 is proved.

3.3 Proof of Theorem 4

Let ρν = ρ ∗ ων be the regularization of the density ρ by means of usual mollifying kernel ων .
Let A be an arbitrary p.d.o. of zero order with symbol a ∈ C1(S1), and let w be an arbitrary
function such that w ∈ C1(QT ), w|∂Ω = 0 and w|t=T = 0. Substituting ϕ = A[ρν ]w on the
place of the test function into (8) we derive

∫

QT

ρ(Dt(A[ρν ]w) +
2∑

i=1

viDi(A[ρν ]w)dxdt +

∫

Ω

ρ0A[ρν(0)]w(x, 0)dx = 0 (47)

Operator A is self-adjoint in L2 and commutes with Di (i=1,2). Thus, (47) can be transformed
to the form

∫

QT

ρ

[
A[ρν ]Dtw +

2∑
i=1

viA[ρν ]Diw

]
dxdt +

∫

QT

A[ρw]

(
Dtρ

ν +
2∑

i=1

viDiρ
ν

)
dxdt

−
∫

QT

ρν

2∑
i=1

Di{A[viw]− viA[w]}dxdt +

∫

Ω

ρ0A[ρν(0)]w(x, 0)dx = 0 (48)
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In the strength of [6, lemma II.1 and corollary II.2] we have

Dtρ
ν +

2∑
i=1

viDiρ
ν → 0 in L2(QT ), ρν(x, 0) → ρ0 in C([0, T ]; Lp(Ω)) ∀ p < ∞ (49)

as ν → 0. In the strength of Lemma 4 and the properties of the p.d.o. A, one has

A[ρ] Dtw + A[ρ]~v∇xw ∈ L2(QT ), divx(A[~vρ]− ~vA[ρ]) ∈ L1(QT ), A[ρ0] w(x, 0) ∈ L2(Ω).

Thus, it is possible to fulfill the limiting transition in (48) as ν → 0, and to obtain, as the
result, the following:

∫

QT

ρ

(
A[ρ] Dtw + A[ρ]~v∇xw

)
dxdt

−
∫

QT

divx(A[~vρ]− ~vA[ρ])ρ w dxdt +

∫

Ω

ρ0A[ρ0] w(x, 0) dx = 0. (50)

Considering in the same way Problem A with the initial data ρ0ε and ~v0ε, we obtain

∫

QT

ρε

(
A[ρε] Dtw + A[ρε]~vε∇xw

)
dxdt

−
∫

QT

divx(A[~vερε]− ~vεA[ρε])ρε w dxdt +

∫

Ω

ρ0εA[ρ0ε] w(x, 0) dx = 0. (51)

Since the set {~φ | ~φ ∈ C1
0(QT ), divx

~φ = 0} is dense in L2(0, T ; H1(Ω)), it is possible to construct
the sequence {~v(n)} such that

supp ~v(n) ⊂ QT , n = 1, 2, . . . , and ~v(n) → ~v in L2(0, T ; H1(Ω)). (52)

Introducing into (50) the sum ~v(n) +(~v−~v(n)) on the place of ~v and aggregating the result with
identity (51), we derive

∫

QT

(ρε − ρ) A[ρε − ρ] (Dtw + ~v(n) ∇xw)dxdt

−
∫

QT

divx(A[~v(n)(ρε − ρ)]− ~v(n)A[ρε − ρ])(ρε − ρ) w dxdt

+

∫

Ω

(ρ0ε − ρ0) A[ρ0ε − ρ0] w(x, 0) dx

+

{∫

QT

(ρ A[ρε] + ρεA[ρ])(Dtw + ~v(n)∇xw)dxdt +

∫

Ω

(ρ0ε A[ρ0] + ρ0A[ρ0ε]) w(x, 0) dx

−
∫

QT

divx(A[~v(n)ρε]− ~v(n)A[ρε])ρ w dxdt −
∫

QT

divx(A[~v(n)ρ]− ~v(n)A[ρ])ρε w dxdt

}

+

[∫

QT

ρε A[ρε] (~vε − ~v(n)) ∇xw)dxdt +

∫

QT

ρ A[ρ] (~v − ~v(n)) ∇xw)dxdt

−
∫

QT

divx(A[(~vε − ~v(n))ρε]− (~vε − ~v(n))A[ρε])ρε w dxdt

−
∫

QT

divx(A[(~v − ~v(n))ρ]− (~v − ~v(n))A[ρ])ρ w dxdt

]
= 0. (53)
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3.3.1 Limiting transitions as ε → 0 and n →∞
Repeating the considerations from [2, pages 14–16], we obtain that the first three summands
in the left hand side of (53) tend to the following expression, as ε → 0:

I(n) ≡
∫ T

0

〈µ, a Dtw〉 dt +

∫ T

0

〈µ, a~v(n) ·∇xw〉dt−
∫ T

0

〈µ, {a, v
(n)
1 ξ1 +v

(n)
2 ξ2} w〉 dt +〈µ0, a w(0, x)〉,

(54)

where ξ ∈ R2, and the Poisson bracket is {α, β} =
∑2

j=1
∂α
∂xj

∂β
∂ξj

− ∂β
∂xj

∂α
∂ξj

. We remark that

differentiating a test function Φ with respect to ξi (i = 1, 2) does not output integrands off
the domain of definition of measure µt because the Poisson bracket in (54) is continuous in

[0, T ]× Ω× S1 and homogeneous of zero order with respect to the variable ~ξ.
We parametrize the unit circle S1 by means of the radial and angular coordinates (r, y): ξ1 =

r cos y, and ξ2 = r sin y, and change variables in (54). Eventually, after simple computations,
we obtain the following:

I(n) =
∫ T

0

〈µ, ãDtw〉 dt +

∫ T

0

〈µ, ã~v(n) · ∇xw〉 dt +

∫ T

0

〈µ, (Y : ∇x~v
(n))

∂ã

∂y
w〉 dt + 〈µ0, ã w(0, x)〉,

(55)

where Y =

( −1
2
sin 2y cos2 y

− sin2 y 1
2
sin 2y

)
and we denote ã(y)

def
= a(cos y, sin y) (= a(ξ/|ξ|)), (ã(y) is

2π-periodic function).
In the strength of Theorem 2.2 and Lemma 3.1, we obtain from (55) that

lim
n→∞

I(n) =
∫ T

0

〈µ, ãDtw〉 dt +

∫ T

0

〈µ, ã~v · ∇xw〉 dt +

∫ T

0

〈µ, (Y : ∇x~v)
∂ã

∂y
w〉 dt + 〈µ0, ã w(0, x)〉. (56)

Now, let us show that the other terms in the left hand side of(53) tend to zero as ε → 0 and
n → ∞. Firstly, we consider the expression in parenthesis {. . .}. In the strength of Theorem
1.1, formula (52) and continuity of the operator A in L2, the following limiting relations hold
true.

∫
QT

(ρ A[ρε] + ρεA[ρ])(Dtw + ~v(n)∇xw)dxdt → 2
∫

QT
ρ A[ρ](Dtw + ~v∇xw)dxdt, (57)∫

Ω
(ρ0ε A[ρ0] + ρ0A[ρ0ε]) w(x, 0) dx → 2

∫
Ω

ρ0 A[ρ0] w(x, 0) dx. (58)

Passing to the limit as ε and n tend to zero in the last two terms in parenthesis in (53) and
applying Lemma 3.2, we derive that

∫
QT

divx(A[~v(n)ρε]− ~v(n)A[ρε])ρ w dxdt → ∫
QT

divx(A[~vρ]− ~vA[ρ])ρ w dxdt, (59)
∫

QT
divx(A[~v(n)ρ]− ~v(n)A[ρ])ρε w dxdt → ∫

QT
divx(A[~vρ]− ~vA[ρ])ρ w dxdt. (60)

Formulae (57)–(60) yield that the limit of the expression in the parenthesis in (53) is the doubled
left hand side of (50). Thus, this expression is equal to zero.
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Finally, consider four integrals in the square brackets in (53). Every of these integrals tends
to zero in the strength of the bound (37) and the limiting relations ~vε → ~v and ~v(n) → ~v.

Thus, after the limiting transition in (53), we derive

∫ T

0

〈µ, ã Dtw〉 dt +

∫ T

0

〈µ, ã~v ·∇xw〉 dt+

∫ T

0

〈µ, (Y : ∇x~v)
∂ã

∂y
w〉 dt +〈µ0, ã w(0, x)〉 = 0. (61)

Note that the linear span of the set {ãw | ã ∈ C1(S1), w ∈ C1(QT ), w|∂Ω = 0, w|t=T = 0}
is dense in {Φ(t, x, y)|Φ ∈ C1(QT × S1), Φ|∂Ω = 0, Φ|t=T = 0}. Consequently, equality (61)
yields (36). Theorem is proved.

The author is very grateful to Professor Pavel Plotnikov for many useful discussions.
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