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We prove the unique solvability of an entropy for-
mulation of the Cauchy problem for a quasilinear ultra-
parabolic anisotropic diffusion equation with nons-
mooth convection coefficients. For this purpose, a well-
posed kinetic formulation of the problem is con-
structed, which arises from examining the properties of
Young measures associated with a sequence of solu-
tions to approximate uniformly parabolic problems.
The central point in our study is a renormalization of
the resulting kinetic equation, which yields a renormal-
ized inequality. The main results of this paper are
derived by analyzing the structure of this inequality.
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, then Eq. (1) is
ultraparabolic. Such equations arise in fluid dynamics,
combustion theory, and financial mathematics (see [1]).
In particular, they describe unsteady mass or heat trans-
port when the effect of diffusion in some spatial direc-
tions is negligible as compared with the effect of con-
vection [2]. Such equations were considered for the first
time by Graetz [3] and Nusselt [4].

In this paper, we use the kinetic equation method to
prove the existence and uniqueness of an entropy solu-
tion to problem (1)–(3). To introduce the concept of an
entropy solution, we need some notation. In what fol-
lows, 

 

Ω

 

 denotes the unit cube (0, 1)d; Q is the cylinder

Ω × (0, T); Lp ⊂ (�d) and Hs, p ⊂ (�d) are
Banach spaces consisting of one-periodic functions and
equipped with the norms  =  and  =

, respectively; and Cl (l ≥ 0) is a closed sub-

space consisting of functions u ∈ Cl(�d) that are
one-periodic with respect to xi , where 1 ≤ i ≤ d.

The differential operator A = divx(A∇x·): C∞ � L2 is
symmetric and nonnegative in the Hilbert space L2 and
has a self-adjoint extension A: D(A) � L2. To describe
the domain D(A), we note that A = O*�O, � =
diag{λ1, λ2, …, λk, 0, …, 0}, and O*O = I, where λi are
positive numbers. For an arbitrary function u ∈ L2, a

function w ∈ (�d) and a vector field ∂w ∈ (�d)
are defined by the formulas w(x) = u(Ox) and ∂w =
{ w, w, …, w, 0, …, 0}T. A function u ∈ L2

belongs to D(A) if and only if w ∈ (�d) and ∂w ∈

(�d). Endowed with the norm

D(A) becomes a Hilbert space, which is hereafter
denoted by �. Now, we can define the concept of an
entropy solution to problem (1)–(3).
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Definition 1. A function u ∈ L∞ ∩ L2(0, T; �) is an
entropy solution to problem (1)–(3) if and only if

for any functions ϕ, ψ, and ω such that ϕ ∈ (�),
ϕ''(u) ≥ 0, ψ'(u) = a'(u)ϕ'(u), and ω'(u) = b'(u)ϕ'(u) and

for any nonnegative functions ζ ∈ (�d × [0, T]) that
are one-periodic with respect to x and vanish at t = T.

Below is the main result of this paper.

Theorem 1. For an arbitrary initial function u0 ∈
L∞, problem (1)–(3) has a unique entropy solution.

This theorem is proved by applying the kinetic
equation method, which reduces a quasilinear equation
to a linear one for a “distribution function” that involves
additional kinetic variables (see, e.g., [5–7]). In this
work, we propose a kinetic formulation of problem (1)–
(3) that makes it possible to simultaneously examine
measure-valued and entropy solutions.

KINETIC FORMULATION

In addition to the original problem in �d × (0, T), we
consider its regularization

(7)

when supplemented with conditions (2) and (3). Here,
vε ∈ C∞(0, T; C∞) is a solenoidal vector field and aε ∈
C∞(�) (ε > 0) is a smooth function that satisfy the
respective limit relations ||vε – v  → 0 and

||aε − a  → 0 as ε  0.

The theory of second-order parabolic equations [8]
implies that the problem given by (7), (2), and (3) has a
unique smooth solution satisfying the inequalities

(8)

where c0 is a constant independent of ε.

Let �(�n) denote the Banach space of bounded
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It follows from (8), Tartar’s theorem [10], and Ball’s
theorem [11] that there exists a subsequence {uε} and

measure-valued functions µ ∈ (  × [0, T]; �(�λ))

and σ ∈ (  × [0, T]; �(�λ × �q)) that are
one-periodic in x and such that, for any function g ∈
C(�λ), it is true that
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and, for any function h ∈ C(�λ × �q) satisfying |h(λ,
q)| ≤ c(1 + |λ| + |q|)k, 0 ≤ k < 2, it is true that
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for 1 < r ≤ .

The measures µx, t and σx, t are called Young mea-
sures and are associated with the weakly convergent
sequences {uε} and {uε, A1/2∇xuε}, respectively. Let f
denote the distribution function of µx, t:

Problem K [kinetic formulation of problem (1)–(3)].

Let f0:  × �λ � [0, 1] be a measurable function that
is one-periodic with respect to x, monotonic and right
continuous with respect to λ, and satisfies the condition
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It is necessary to find a distribution function f ∈ L∞(  ×
(0, T) × �λ), a parametrized nonnegative measure σ ∈

(  × (0, T); �(�λ × �q)), and a nonnegative defect

measure M ∈ �(  × (0, T) × �λ) that satisfy the fol-
lowing conditions:

(a) f (x, t, λ) is a one-periodic function of x and a
monotonic and right continuous function of λ ∈ �.
Moreover,

In particular, 0 ≤ f ≤ 1 a.e. in Q × �λ. This means that
the Stieltjes measure µx, t = dλf(x, t, λ) is a probability
measure on �λ and spt µx, t ⊂ [0, 1].

(b) The support of the parametrized measure σx, t lies
in the strip [0, 1]λ × �q. The mapping (x, t) � σx, t is
one-periodic with respect to x and satisfies

In particular, the function χ, defined as

is a one-periodic function of x and a monotonic and
right continuous function of s, and the support of the
Stieltjes measure dλχ(x, t, λ) lies on [0, 1] a.e. in (x, t) ∈

 × (0, T).

(c) For any g ∈ (�λ), the function

belongs to the Hilbert space L2(0, T; �), and

holds a.e. in (x, t) ∈  × (0, T).

(d) The defect measure M is one-periodic with
respect to x.

(e) The distribution function f satisfies the following
equation and initial condition:
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Formulas (12) and (13) are understood in the sense of
distributions and can be equivalently represented as the
integral equality

in which ζ(x, t, λ) is an arbitrary one-periodic smooth
function of x that vanishes in the neighborhood of the
plane {t = T} for sufficiently large |λ|.

It is easy to see that the solution set of the problem
K is convex. The general theory of Young measures [9],
Eq. (7), conditions (2) and (3), and limit relations (9)
and (10) imply the following result.

Theorem 2. Suppose that f0:  × �λ � [0, 1] is an
arbitrary function that is one-periodic in x, monotonic
and right continuous in λ, and satisfies the equality

(14)

and condition (11). Then, the problem K has at least
one solution (f, σ, M) with the initial data f0.

The relationship between the entropy solutions to
problem (1)–(3) and the solutions to the problem K is
established by the following theorem.

Theorem 3. If u is an entropy solution to problem (1)–
(3) with the initial data u0, then the problem K with the
initial data

(15)

has a solution such that

Conversely, if (f, σ, M) is a solution to the problem K
with initial data (15) and f takes only the values 0 and 1,
then u(x, t) = sup{λ: f(x, t, λ) = 0} is an entropy solu-
tion to problem (1)–(3) with the initial data u0(x).

The solution to the problem K can be called a mea-
sure-valued solution to problem (1)–(3) in view of the
well-known concept of measure-valued solutions to
scalar conservation laws [9, Chapter 4; 10].
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RENORMALIZATION

Since Eq. (12) is linear, we can use the idea of renor-
malization suggested in [12] and justify a renormaliza-
tion procedure for (12), thus yielding the following
result.

Theorem 4. For any smooth convex function ϕ on
[0, 1], there exists a Borel measure Hϕ ∈C(�λ × Q)*
with a support in the strip {0 ≤ λ ≤ 1} such that

(16)

for any nonnegative smooth function ζ(x, t, λ) that is
one-periodic with respect to x and vanishes in the neigh-
borhood of the plane {t = T} for sufficiently large |λ|.

To conclude, we explain how renormalized inequal-
ity (16) can be used to prove Theorem 1.

Setting ϕ( f ) = f ( f – 1) and ζ(x, t, λ) = ζ1(λ)ζ2(t) in
(16), where ζ1 is a nonnegative function equal to unity
on [0, 1] and ζ2 is a nonnegative function that vanishes
at t = T and monotonically decreases for t < T, we con-
clude that f ( f – 1) � 0. The existence statement in The-
orem 1 follows from this result, item (a) in the state-
ment of the problem K, and Theorem 3. Now, we
assume that the problem K has two solutions (f = 1u ≤ λ,
σ, M and f ' = 1u' ≤ λ, σ', M') that correspond to the same
initial function f0 = . Since the solution set of the
problem K is convex, the half-sum of the two solutions
is also a solution corresponding to f0. Repeating the pre-
vious reasoning for the renormalized inequality, we

conclude that  takes only the values 0 and 1,

which implies that f = f '; therefore, u = u' a.e. in Q,
which proves the uniqueness in Theorem 1.

Note that, according to f (x, t, λ) = 1u(x, t) ≤ λ, the
Young measure µx, t is a parametrized Dirac measure on
�λ supported by the point λ = u(x, t). In view of the the-
ory of Young measures [9], this means that the sequence
uε converges to u strongly in L1(Q) as ε  0.
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