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We consider a non-isotropic convection-diffusion-reaction equation of a very
general form, in which the diffusion matrix is nonnegative and may change its
rank depending on temporal and spatial variables, and convection and reaction
terms may be discontinuous. This equation arises in astrophysics and plasma
physics, in fluid dynamics, mathematical biology and financial mathematics.
We assume that the equation a priori admits the maximum principle and
is genuinely nonlinear, and we prove that there exists at least one entropy
solution and that the genuinely nonlinear structure of the equation rules out
fine oscillatory regimes in entropy solutions. The proofs rely on the method of
kinetic equation and on theory of H-measures.
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1. Introduction

In a space-time layer Π := Rd
x × (0, T ), T = const > 0, we consider the

Cauchy problem for the quasilinear equation with partial diffusion and dis-
continuous convection and reaction terms

ut + ∂xiai(x, t, u)− ∂xi(aij(x, t)∂xj b(u)) + r(x, t, u) = 0, (1a)

endowed with periodic initial data belonging to L∞(Rd) and periodicity
conditions

u|t=0 = u0(x), x ∈ Rd, (1b)

u(x + ei, t) = u(x, t), (x, t) ∈ Π. (1c)
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In (1) ei (i = 1, ..., d) are standard basis vectors in Rd, u(x, t) is an unknown
function; the flux vector a := (ai), the diffusion matrix A := (aij), the
diffusion function b, and the reaction function r are given and satisfy the
conditions

ai, Dxiai, r ∈ L2
loc(Π; C1

loc(Ru)), aij ∈ C2
loc(Π), b ∈ C2

loc(R), (2)

ai, aij , r are 1-periodic in x, A is symmetric, (3)

aij(x, t)ξiξj ≥ 0, b′(u) ≥ 0, ∀ ξ ∈ Rd, (x, t) ∈ Π, u ∈ R. (4)

It is assumed that Eq. (1a) a priori admits the maximum principle, i.e.,
that for its solution (if any) the bound |u(x, t)| ≤ c∗ holds a.e. in Π, where
the constant c∗ depends only on the given data in the problem. The class
of conditions providing the maximum principle is very wide, and such a
condition may be set explicitly using Ref. 1.

In (1) and further the conventional rule of summation over repeating
indexes is in use. Also, further the derivative Dxi is defined by the formula

Dxig(x, t, u) = (∂xig(x, t, λ))|λ=u(x,t), ∀ g ∈ C1(Π× Rλ).

In particular, the derivatives ∂xi and Dxi are connected via identity

∂xig(x, t, u) = Dxig(x, t, u) + ∂ug(x, t, u)∂xiu.

It is supposed that the rank of the diffusion matrix A may be less than
the dimension of the space Rd

x and may vary depending on x and t. There-
fore Eq. (1a) is an ultraparabolic equation. Equations of the form (1a)
arise in particle physics, fluid dynamics, combustion theory, mathemati-
cal biology, and financial mathematics. They are called Kolmogorov-type
equations in line with the works of A. N. Kolmogorov relating to problems
on stochastic diffusive processes modeling Brownian motion (see in survey
Ref. 2). Particular forms of Eq. (1a) have also other names: in problems
about nonlinear convection-diffusion-reaction in anisotropic continuous me-
dia they are called Graetz–Nusselt equations and in studies of the transport
of cosmic-rays they are named Fokker–Planck equations. They describe, in
particular, non-stationary transport of energy or matter in cases, when
effects of diffusion in some spatial directions are negligible as compared
to convection and reaction. Considerably recently Kolmogorov-type equa-
tions have been applied to astrophysical problems: in solar physics with
the investigation of acceleration of fast electrons in the solar corona and
in space physics with ion acceleration at the solar termination shock and
with particle acceleration at astrophysical shocks, including the possibility
of second-order Fermi acceleration.3
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2. Notion of entropy solutions

We are interested in developing the existence and qualitative theory for the
Cauchy problem (1) under conditions (2)–(4) and under the assumption
that the maximum principle is a priori guaranteed. From the physical point
of view, the most appropriate concept of solution to problem (1) is the
notion of entropy solutions, since it is consistent with the fundamental fact
that in diffusive processes entropy does not decrease.4,5

In order to define an entropy solution of problem (1), let us introduce
some notation. By Q we denote Ω × (0, T ), where Ω stands for the unit
cube [0, 1)d. By Lp ⊂ Lp

loc(Rd) and Hs,p ⊂ Hs,p
loc (Rd) we denote the Banach

spaces, which consist of 1-periodic functions and are supplemented with the
norms ‖u‖Lp = ‖u‖Lp(Ω) and ‖u‖Hs,p = ‖u‖Hs,p(Ω). For l ≥ 0, let Cl be
the closed subspace of u ∈ Cl(Rd) such that u is 1-periodic with respect
to xi, 1 ≤ i ≤ d. Note that since Eq. (1a) is degenerate, then the gradient
∇xu of a possible solution u ∈ L∞(Π) may be understood merely in the
distributions sense. However, also note that since the matrix A is symmetric
and nonnegative, then there is a unique square root A1/2 = {αij}, which
is a symmetric and nonnegative matrix, as well. This and the standard
energy estimate1 yield that a possible solution u of problem (1) should a
priori satisfy the bound ‖A1/2∇xβ(u)‖L2(Q) ≤ c, where the constant c does
not depend on u and β(u) :=

∫ u √
b′(s)ds.

This means that, although a particular derivative ∂xiu may not be mea-
surable on Π, the differential expressions of the form αij∂xj β(u) involving
these derivatives are measurable in Π and integrable with the square in Q,
i.e., they belong to L2

loc(Π). Therefore the demand of partial integrability
of ∇xu should be introduced into a notion of entropy solution.

Now we are in a position to define an entropy solution of problem (1).

Definition 2.1. Function u = u(x, t) is an entropy solution of problem (1),
if it satisfies the regularity and periodicity conditions u ∈ L∞(0, T ; L∞) and
αij∂xj β(u) ∈ L2(0, T ; L2), 1 ≤ i ≤ d; the entropy inequality

∂tϕ(u) + ∂xiqi(x, t, u)−Dxiqi(x, t, u) + ϕ′(u)Dxiai(x, t, u)

−∂xi(aij(x, t)∂xj w(u)) + ϕ′′(u)
d∑

i=1

|αij(x, t)∂xj β(u)|2

+ϕ′(u)r(x, t, u) ≤ 0 (5)

in the distributions sense for all functions ϕ, qi and w such that ϕ ∈ C2
loc(R),

ϕ′′(u) ≥ 0, ∂uqi(x, t, u) = ϕ′(u)∂uai(x, t, u), and w′(u) = ϕ′(u)b′(u); and
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the initial data (1b) in the weak sense, i.e., in the sense of the limiting
relation u(·, τ) → u0(·) weakly* in L∞, as τ ↘ 0.

Note that taking ϕ(u) = ±u in (5) we see that entropy solution satisfies
Eq. (1a) in the sense of distributions.

3. Formulation of the main results

Besides conditions (2)–(4), the following genuine nonlinearity condition is
imposed on the functions ai, aij , and b.

Condition 3.1. For a.e. (x, t) ∈ Π the following demand is fulfilled: for
all (ξ, τ) ∈ Rd+1 such that |ξ|2 + τ2 = 1 the intersection of the sets
{λ ∈ R | b′(λ)aij(x, t)ξiξj = 0} and {λ ∈ R | τ +

(
∂λai(x, t, λ) +

(1/2)b′(λ)∂xj aij(x, t)
)
ξi = 0} has zero Lebesgue measure.

The following new existence theorem is the first main result of the paper.

Theorem 3.1. Assume that Eq. (1a) is genuinely nonlinear, satisfies con-
ditions (2)–(4) and a priori admits the maximum principle. Then problem
(1) has at least one entropy solution for any given data u0 ∈ L∞.

Also we establish a qualitative property of genuine nonlinearity to rule
out fine oscillations developing from initial data, which is the second main
result of the paper.

Theorem 3.2. Assume that Eq. (1a) is genuinely nonlinear, satisfies con-
ditions (2)–(4), a priori admits the maximum principle, and is provided
with highly oscillatory initial data uk

0 ∈ L∞, k = 1, 2, . . . such that uk
0 → u0

weakly* in L∞ as k ↗∞.
Then there exists a subsequence of entropy solutions uk, corresponding

to initial data uk
0 , which tends strongly in L2(0, T ; L2) as k ↗ ∞ to an

entropy solution u, corresponding to initial data u0.

4. Method of justification of Theorems 3.1 and 3.2

Proofs of Theorems 3.1 and 3.2 rely upon the method of kinetic equation,6,7

which allows to reduce quasilinear equations and systems to linear scalar
equations on “distribution” functions involving additional “kinetic” vari-
ables. Alongside this method, the theory of H-measures8,9 is implemented.
In this final section we give a brief explanation of the methodology of the
proofs of Theorems 3.1 and 3.2.
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First, the kinetic formulation of problem (1) is introduced in the form
proposed in Ref. 6. It is linear with respect to the sought function, which
is the distribution function f(x, t, λ) = fx,t(λ) of the parametrized Dirac
measure on Rλ concentrated at the point λ = u(x, t), where u(x, t) is the
entropy solution of problem (1). Notion of entropy solution and the kinetic
formulation are equivalent to each other. Linearity of the kinetic formula-
tion becomes possible due to appearance of an additional kinetic variable
λ.

Second, the proof of Theorem 3.2 is fulfilled by virtue of the toolbox of
the theory of H-measures. The construction of H-measures associated with
a weakly convergent subsequence of the distribution functions fk(x, t, λ),
k = 1, 2, . . . is introduced in the form, which was proposed in Ref. 8 for
studying scalar conservation laws. By their nature, H-measures are mi-
crolocal defect measures that allow to track evolution of fine oscillatory
regimes in the space of time t, positions x and frequencies ξ. More pre-
cisely, for any fixed λ ∈ R they indicate where in the physical space of
time and positions, and at which frequencies in the Fourier space, weakly
convergent in L2

loc sequences fail to converge strongly. One of the main
properties of H-measures is that they are zero measures if and only if their
generating subsequence is strongly convergent. Using the technics of Ref.
10, it is possible to establish a localization principle for the H-measures,
i.e., to define a set in the (x, t, ξ)-space such that the H-measures vanish
in its complement. This principle combined with the genuine nonlinearity
condition immediately imply that the H-measures are equal to zero mea-
sure everywhere for almost all λ ∈ R. Hence their generating subsequence
is compact, which finishes the proof of Theorem 3.2.

Finally, in order to prove Theorem 3.1, we introduce the well-posed
approximation of problem (1), which incorporates a regularizing “small
viscosity” coefficient. Availability of such approximation is guaranteed by
the well-known theory of parabolic equations.1 After this, it is sufficient
to remark that the approximate problem admits the kinetic formulation of
exactly the same form as problem (1). Thus the rest of the proof of Theorem
3.1 is merely the byproduct of the proof of Theorem 3.2.
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